Tutorial on Structural Analysis using BEAM elements of CAEPIPE

Tutorial

This tutorial explains how an equipment support frame is modeled and analyzed using BEAM elements of CAEPIPE. A similar procedure may be followed to include pipe support structures such as pipe rack along with the piping layout in pipe stress analysis, in case (a) the actual support structure stiffnesses are to be included in piping analysis, and (b) the forces and moments applied on the support structure members by the piping are to be determined to validate their designs.

Step 1:

Attached is a sample CAEPIPE model developed for calculating Anchor Bolt Forces and Moments on equipment foundation of a Lubrication Oil Recirculation System due to Static Seismic G loading. The nodes 610 through 700 are Anchor Bolt Location nodes that are fixed inside the concrete pedestal.

Step 2:

Beam Material required for this model is defined through Layout Window > Misc > Beam Material. See the figure shown below for details.

HIH	Caepipe	: Beam materia	als (1) - [fo	rces_a	and_mome	nts_on_bolt.mo	od (c:\tut	—		×
File	Edit	View Option	s Misc W	indo	w Help					
#	Name	Description	E (kg/mm2)	Nu	Density (kg/m3)	Alpha (mm/mm/C)				
1	MS	ISMC	20394	0.3	7850	11.61E-6				
2										

Step 3:

Beam Sections required for this model are defined through Layout Window > Misc > Beam Sections. See figure shown below for details. Properties shown for Channel (MC8x18.7), Angle (L2x2x3/16) and Circular Hollow Pipe (Px3/4) are selected from the AISC Library available in CAEPIPE. Since the value of Torsional inertia for Angle section L2x2x3/16 (same as Torsional Constant from AISC Standard) is not available within CAEPIPE at this time, it is manually entered by referring to AISC Standard. Also, the depth and width of this Angle section are manually entered.

Caepipe : Beams (3) - [forces_and_moments_on_bolt.mod (c:\tutorials\structural analy											×
File	Edit	View Option:	s Misc	Window He	elp						
			Axial	Moment	of inertia	Torsional	Shea	r area			
#	Name	Description	area (mm2)	Major (mm4)	Minor (mm4)	constant (mm4)	Major (mm2)	Minor (mm2)	Depth (mm)	Width (mm)	
1	200	MC 8X18.7	3548.38	2.1852E+7	1.7482E+6	158168			203.2	75.641	'
2	50	L 2X2X3/16	461.289	113215	113215	3829.33			50.8	50.8	
3	20	PX 3/4	279.354	18730.4	18730.4	37460.8			26.67	26.67	

The axial area, major and minor moments of inertia must be input. Input of torsional inertia is optional. If it is not input, it defaults to the sum of major and minor moments of inertia. Input of shear areas is optional. If shear areas are input, shear deflection effect is included in the analysis. Input of depth and width is optional. Presently, they are used only for rendered plots of the beam.

Step 4:

Similarly, Beam Load (Temperature) is defined through Layout Window > Misc > Beam Load. See figure shown below for details.

H	Caepipe	: Beam	loads (1) -	[forces_a	nd_mome	nts_on_bo	olt.mod (c:	\tut	torials\structural a	—	×
File	Edit	View	Options M	isc Win	dow He	lp					
-#			6	2 •		•					
#	Name	T1 (C)	Add.Wgt. (kg/m)	Wind Load 1	Wind Load 2	Wind Load 3	Wind Load 4				
1	1	21.11									

Step 5:

Equipment frame is then modeled using BEAM elements by defining the offsets DX, DY and DZ as shown in the attached model.

Step 6:

The Anchor Bolt Location nodes (610 through 700) that are fixed inside the concrete pedestal are then modeled as "Anchor" with their stiffnesses in three (3) translational directions and three (3) rotational directions as "Rigid".

-0-1	Caepipe	: Ancl	hors (10) -	[forces_an	d_moment	s_on_bolt.mod	(c:\tutorials\st	ructural analys	is)]								×
File Edit View Options Misc Window Help																	
+																	
#	Node	Tag	KX/kx	KY/ky	KZ/kz	KXX/kxx	KYY/kyy	KZZ/kzz			Re	leas	es			Level	Tag
			(kg/mm)	(kg/mm)	(kg/mm)	(kg-m/deg)	(kg-m/deg)	(kg-m/deg)	Х	Y	Ζ	\times	ΥY	ZZ	Anchor in		
1	610		Rigid	Rigid	Rigid	Rigid	Rigid	Rigid							GCS		
2	620		Rigid	Rigid	Rigid	Rigid	Rigid	Rigid							GCS		
3	630		Rigid	Rigid	Rigid	Rigid	Rigid	Rigid							GCS		
4	640		Rigid	Rigid	Rigid	Rigid	Rigid	Rigid							GCS		
5	650		Rigid	Rigid	Rigid	Rigid	Rigid	Rigid							GCS		
6	660		Rigid	Rigid	Rigid	Rigid	Rigid	Rigid							GCS		
7	670		Rigid	Rigid	Rigid	Rigid	Rigid	Rigid							GCS		
8	680		Rigid	Rigid	Rigid	Rigid	Rigid	Rigid							GCS		
9	690		Rigid	Rigid	Rigid	Rigid	Rigid	Rigid							GCS		
10	700		Rigid	Rigid	Rigid	Rigid	Rigid	Rigid							GCS		

Step 7:

The weight of the equipment is then input using data type "CMASS" available in CAEPIPE. The weight thus defined is then applied on the equipment support frame by connecting a "mass-less" rigid element from the center of the support frame to the equipment Center of Gravity (COG).

Defined Static Seismic Load (g's) through Layout Window > Loads > Static Seismic.

Static Seismic Load (g's)		×						
ASCE Seismic								
🔲 🗔 Use ASCE for Static Seismic g's								
Structure occupancy category	III –							
Site Class	D 👻							
Mapped MCE Spectral Acceleration at short period S(S)	0.000							
Component Height in Structure (z)	0	(mm)						
Structure Height (h)	0	(mm)						
Component Amplication Factor, a(p)	2.500							
Component Response Modification Factor, R(p)	12.000							
Importance Factor, I(p)	1.000							
All. Stress Design Factor, ASD(a)	0.700							
X Y	Z							
0.300	0.150)						
⊂Load Combination								
OK Cancel Reset								

Step 10:

Select the load cases required for analysis through Layout Window > Loads > Load cases. Once done, save the model and perform the analysis through Layout window > File > Analyze.

Load cases (2)	×					
☑ Sustained (W+P)	🗖 Design (W+PD+TD)					
Empty Weight (W)	🔽 Static seismic 1 (g's)					
🔲 Expansion (T1)	🔲 Modal analysis					
Operating (W+P1+T1)						
OK Cancel	All None					

Step 11:

Upon successful analysis, CAEPIPE will show the following options under Results dialog.

Step 12:

Selecting the option "Support load summary" will show the Forces and Moments at each Anchor Bolt for different load cases and combinations selected for analysis.

Caepipe : Support load summary for anchor at node 610 - [Forces_and_Moment											
<u>File Results View Options Window H</u> elp											
Load combination	FX (kg)	FY (kg)	FZ (kg)	MX (kg-m)	MY (kg-m)	MZ (kg-m)					
Sustained	109	-18	-1926	3	3	0]				
Sustained+Seismic	1097	190	-1094	19	51	2					
Sustained-Seismic	-879	-226	-2759	-14	-46	-1					
Maximum	1097	190	-1094	19	51	2					
Minimum	-879	-226	-2759	-14	-46	-1					
Allowables	0	0	0	0	0	0					