

The FASTEST Solutions for Piping Design and Analysis.

Disclaimer

Please read the following carefully:

This software and this document have been developed and checked for correctness and accuracy by SST Systems, Inc. (SST) and InfoPlant Technologies Pvt. Ltd. (InfoPlant). However, no warranty, expressed or implied, is made by SST and InfoPlant as to the accuracy and correctness of this document or the functioning of the software and the accuracy, correctness and utilization of its calculations.

Users must carry out all necessary tests to assure the proper functioning of the software and the applicability of its results. All information presented by the software is for review, interpretation, approval and application by a Registered Professional Engineer.

CAEPIPE is a trademark of SST and InfoPlant.

CAEPIPE Version 7.30, $\ensuremath{\mathbb{C}}$ 2015, SST Systems, Inc. and InfoPlant Technologies Pvt. Ltd. All Rights Reserved.

SST Systems, Inc. 1798 Technology Drive, Suite 236 San Jose, California 95110 USA

InfoPlant Technologies Pvt. Ltd. 7, Crescent Road Bangalore – 560001 India Tel: +1 (408) 452-8111 Fax: +1 (408) 452-8388 Email: info@sstusa.com www.sstusa.com

Tel: +91-80-40336999 Fax: +91-80-41494967 Email: iplant@vsnl.com Annexure A PCF Export

PCF Export

CAEPIPE can export model data from inside the Layout window to a PCF file with the extension .pcf (piping component file). To export a model, select the menu command File > Export to PCF... from the Layout window.

This section brings out the details on how each element and data from CAEPIPE are exported to PCF file. The stress layout developed in CAEPIPE with Y axis vertical is automatically translated to be Z axis as vertical when the layout is exported to PCF file.

Limitations

The Element types and Data types listed below are not transferred to PCF at this time.

Element Types

- 1. Ball Joint
- 2. Beam
- 3. Elastic Element
- 4. Hinge Joint
- 5. Tie Rod
- 6. Comment and
- 7. Hydrotest Load

Data Types

- 1. Concentrated Mass
- 2. Force
- 3. Harmonic Load
- 4. Jacket End Cap
- 5. Spider
- 6. Threaded Joint
- 7. Time Varying Load
- 8. User SIF and
- 9. Weld

Units

The stress system will be exported to PCF in SI units, when the Length unit selected in CAEPIPE for a stress layout is "m" or "mm". Otherwise, the stress layout will be exported to PCF in English units. The table below provides the details on English and SI units used while exporting to PCF.

SI. No.	Description of Units	English Units	SI Units
1.	Length	inch	mm
2.	Dimension	inch	mm
3.	Angle	degree	degree
4.	Weight	Lb	kg
5.	Density	lb/in3	Kg/m3
6.	Temperature	deg. F	deg. C
7.	Pressure	psi	bar
8.	Stiffness	lb/inch	N/mm
9.	Rotational Stiffness	in-lb/deg	Nm/deg

Basic Header Information

The Basic Header Information attributes that defines the control file identifier and various Units that are used to specify Bores, Co-ordinates, Bolt Diameters, Bolt Lengths and Weights while exporting PCF file are provided below for both English and SI Units.

ISOGEN-FILES ISOGEN.FLS UNITS-BORE INCH / MM UNITS-CO-ORDS INCH / MM UNITS-WEIGHT LBS/KGS UNITS-BOLT-DIA INCH/MM UNITS-BOLT-LENGTH INCH/MM In addition to the above, the layout of stress system is always exported to PCF as a System Isometric using the identifier "SYSTEM-ISOMETRIC-REFERENCE" as the stress system may generally contain one or more individual pipelines that are physically connected in such a way that they form a network.

Additional optional attributes which relate to the "System" are not written to the PCF file at this time.

Pipeline Header Information

Each "From" node defined in CAEPIPE is exported to PCF as a PIPELINE-REFERENCE attribute with its value set to "P" followed by the From Node number used in CAEPIPE.

The Temperature (T1) and Pressure (P1) defined in CAEPIPE for the element followed by the From node is written to PCF using the attributes "PIPELINE-TEMP" and ATTRIBUTE1 respectively in English or SI units as shown below.

For example, a From Node 10 in CAEPIPE with Temperature (T1 = 200 C) and Pressure (P1 = 10 bar) of the element following the "From" node is exported to PCF as

PIPELINE-REFERENCE P10 PIPELINE-TEMP 200 ATTRIBUTE1 10

Component Identifiers

Each piping component from CAEPIPE is exported to PCF in a self-contained data block that consists of a "Component Identifier" together with a list of attributes that help to identify component location, size and specific requirements related to a physical component in a pipeline.

This section provides in details on how each piping component (element) from CAEPIPE is transferred to PCF along with their list of attributes. Each component from CAEPIPE is exported to PCF with Mandatory attributes, Material Information Attributes and Supplementary Information Attributes. The supplementary information attributes of each component will have eight (8) COMPONENT-ATTRIBUTES as shown in the table below.

SI. No.	Component Attribute in PCF	CAEPIPE Attribute	English Units	SI Units
1.	COMPONENT-ATTRIBUTE1	Section Outer Diameter	'inch'	'mm'
2.	COMPONENT-ATTRIBUTE2	Section Wall Thickness	'inch'	'mm'
3.	COMPONENT-ATTRIBUTE3	Section Corrosion Allowance	'inch'	'mm'
4.	COMPONENT-ATTRIBUTE4	Section Mill tolerance	%	%
5.	COMPONENT-ATTRIBUTE5	Section Insulation Density	ʻlb/in3'	'kg/m3'
6.	COMPONENT-ATTRIBUTE6	Section Insulation Thickness	'inch'	'mm'
7.	COMPONENT-ATTRIBUTE7	Temperature T1	'deg. F'	'deg. C'
8.	COMPONENT-ATTRIBUTE8	Pressure P1	'psi'	'bar'

The co-ordinates for all components and supports are transferred in 'inch' for English Units and 'mm' for SI Units. Similarly, size attribute is transferred in 'inch' for English Units and 'mm' for SI Units. The material type and grade for each component is transferred to PCF through ITEM CODE.

Element types from CAEPIPE

Pipe

Pipe element from CAEPIPE is transferred to PCF as "PIPE" along with their attributes as shown below.

The absolute co-ordinate corresponding to "From" and "To" node is written to "END-POINT" attribute.

For standard pipe sizes, the Nominal Size (NS) corresponding to Outer Diameter (OD) defined for the element via section property is written to "Size" attribute in "inch" for English Units and "mm" for SI Units. For non-standard pipe sizes, OD defined for the element via section property is written to "Size" attribute.

The material properties (Name and Grade) defined for the element via "Material" property is written to PCF using the "ITEM-CODE" attribute.

Section properties of pipe element such as OD, Wall Thickness, Corrosion Allowance, Mill tolerance, Insulation Density and Insulation Thickness are written to "COMPONENT-ATTRIBUTE1" through "COMPONENT-ATTRIBUTE6" as explained in the Table above.

Temperature T1 and Pressure P1 defined for the pipe element via "Load" property is written to "COMPONENT-ATTRIBUTE7" and "COMPONENT-ATTRIBUTE8" respectively as explained in the Table above.

The element properties other than those listed above are ignored and not transferred to PCF at this time.

Component Identifier

PIPE

Mandatory Attributes

Material Information Attributes			
END-POINT	E/W co-ords		
END-POINT	E/W co-ords		

N/S co-ords N/S co-ords Elevation co-ords Elevation co-ords Size Size

ITEM-CODE data FABRICATION-ITEM

Supplementary Information Attributes

COMPONENT-ATTRIBUTE1	data
COMPONENT-ATTRIBUTE2	data
COMPONENT-ATTRIBUTE3	data
COMPONENT-ATTRIBUTE4	data
COMPONENT-ATTRIBUTE5	data
COMPONENT-ATTRIBUTE6	data
COMPONENT-ATTRIBUTE7	data
COMPONENT-ATTRIBUTE8	data

Jacketed Pipe

The Core Pipe of Jacketed Pipe element of CAEPIPE is transferred to PCF as "PIPE" along with their attributes as explained above. The Jacketed Pipe details are not transferred to PCF at this time as there is no provision available in PCF.

Bend

Bend element from CAEPIPE is transferred to PCF as "ELBOW" along with their attributes as shown below.

The co-ordinate corresponding to "Near" and "Far End" nodes (referred in CAEPIPE as Node number suffixed with A and B) are written to "END-POINT" attributes. The co-ordinate corresponding to "TIP" from CAEPIPE is written to "CENTRE-POINT" attribute of PCF.

For standard component sizes, the Nominal Size (NS) corresponding to Outer Diameter (OD) defined for the element via section property is written to "Size" attribute in "inch" for English Units and "mm" for SI Units. For non-standard component sizes, OD defined for the element via section property is written to "Size" attribute.

The material properties (Name and Grade) defined for the element via "Material" property is written to PCF using the "ITEM-CODE" attribute.

The value of SKEY is written as "ELBW".

Section properties of element (defined via section property) such as OD, Wall Thickness, Corrosion Allowance, Mill tolerance, Insulation Density and Insulation Thickness are written to "COMPONENT-ATTRIBUTE1" through "COMPONENT-ATTRIBUTE6" as explained above.

Temperature T1 and Pressure P1 defined for the bend element via "Load" property is written to "COMPONENT-ATTRIBUTE7" and "COMPONENT-ATTRIBUTE8" respectively as explained above.

Bend radius [inch/mm] and Angle [deg] defined for bend element in CAEPIPE are transferred to "BEND-RADIUS" and "BEND-ANGLE" respectively.

The properties other than those explained above are ignored and not transferred to PCF at this time.

Component Identifier

BEND

Mandatory Attributes

END-POINT

E/W co-ords

N/S co-ords

Elevation co-ords

END-POINT	E/W co-ords
CENTRE-POINT	E/W co-ords

N/S co-ords N/S co-ords Elevation co-ords Elevation co-ords Size

ITEM-CODE data FABRICATION-ITEM SKEY ELBW

Material Information Attributes

Supplementary Information Attributes

COMPONENT-ATTRIBUTE1	data
COMPONENT-ATTRIBUTE2	data
COMPONENT-ATTRIBUTE3	data
COMPONENT-ATTRIBUTE4	data
COMPONENT-ATTRIBUTE5	data
COMPONENT-ATTRIBUTE6	data
COMPONENT-ATTRIBUTE7	data
COMPONENT-ATTRIBUTE8	data
BEND-RADIUS	data
BEND-ANGLE	data

Miter Bend

Miter Bend element from CAEPIPE is transferred to PCF as "ELBOW" along with their attributes as explained above. In addition, the value of SKEY is written as "BEBW" instead of "ELBW".

Jacketed Bend

The Core Bend of Jacketed Bend element of CAEPIPE is transferred to PCF as "ELBOW" along with their attributes as explained above. The Jacketed Bend details are not transferred to PCF at this time as no provision is available in PCF.

Valve

Valve element from CAEPIPE is transferred to PCF as "VALVE" along with their attributes as shown below.

The co-ordinate corresponding to "From" and "To" node is written to "END-POINT" attributes.

For standard component sizes, the Nominal Size (NS) corresponding to Outer Diameter (OD) defined for the valve element via section property is written to "Size" attribute in "inch" for English Units and "mm" for SI Units. For non-standard component sizes, OD defined for the valve element via section property is written to "Size" attribute.

The material properties (Name and Grade) defined for the valve element via "Material" property is written to PCF using the "ITEM-CODE" attribute.

The value of SKEY is written as "VG**" for Gate and Globe Valve, "CK**" for Check Valve, "ZB**" for Butterfly Valve, "VC**" for Control Vale, "VB**" for Ball Valve and "VP**" for Plug Valve. For valve types other than those explained above, the SKEY is written as "VS**".

Section properties of valve element (defined via section property) such as OD, Wall Thickness, Corrosion Allowance, Mill tolerance, Insulation Density and Insulation Thickness are written to "COMPONENT-ATTRIBUTE1" through "COMPONENT-ATTRIBUTE6" as explained above.

Temperature T1 and Pressure P1 defined for the valve element via "Load" property is written to "COMPONENT-ATTRIBUTE7" and "COMPONENT-ATTRIBUTE8" respectively as explained above.

Empty weight of valve is transferred to "WEIGHT" attribute in 'lb' for English Units and 'kg' for SI Units.

The valve properties other than those explained above are ignored and not transferred to PCF at this time.

Component Identifier

VALVE

Mandatory Attributes

END-POINT	E/W co-ords	N/S co-ords	Elevation co-ords	Size
END-POINT	E/W co-ords	N/S co-ords	Elevation co-ords	Size

Material Information Attributes

ITEM-CODE	data
FABRICATION-ITEM	data
SKEY	data

Supplementary Information Attributes

COMPONENT-ATTRIBUTE1	data
COMPONENT-ATTRIBUTE2	data
COMPONENT-ATTRIBUTE3	data
COMPONENT-ATTRIBUTE4	data
COMPONENT-ATTRIBUTE5	data
COMPONENT-ATTRIBUTE6	data
COMPONENT-ATTRIBUTE7	data
COMPONENT-ATTRIBUTE8	data
WEIGHT	data

Reducer

Reducer element from CAEPIPE is transferred to PCF as "REDUCER-CONCENTRIC" along with their attributes as shown below.

The co-ordinate corresponding to "From" and "To" node is written to "END-POINT" attributes.

For standard component sizes, the Nominal Sizes (NS) corresponding to Outer Diameter 1 (OD1) and Outer Diameter 2 (OD2) of Reducer element are written to "Size" attributes in "inch" for English Units and "mm" for SI Units. For non-standard component sizes, OD1 and OD2 of reducer element are written to "Size" attributes.

The material properties (Name and Grade) defined for the reducer element via "Material" property is written to PCF using the "ITEM-CODE" attribute.

The value of SKEY is written as "RCBW".

Section properties defined for the Reducer element (via section property) such as OD, Wall Thickness, Corrosion Allowance, Mill tolerance, Insulation Density and Insulation Thickness are written to "COMPONENT-ATTRIBUTE1" through "COMPONENT-ATTRIBUTE6" as explained above.

Temperature T1 and Pressure P1 defined for the valve element via "Load" property is written to "COMPONENT-ATTRIBUTE7" and "COMPONENT-ATTRIBUTE8" respectively as explained above.

The reducer properties other than those explained above are ignored and not transferred to PCF at this time.

Component Identifier

REDUCER-CONCENTRIC

Mandatory Attributes

END-POINT END-POINT	E/W co-ords E/W co-ords	N/S co-ords N/S co-ords	Elevation co-ords Elevation co-ords	Size Size	
Material Information A	ttributes				
ITEM-CODE FABRICATION-ITEM SKEY	data data RCBW				
Supplementary Information Attributes					
COMPONENT-ATTR	RIBUTE1	data			

COMPONENT-ATTRIDUTET	uala
COMPONENT-ATTRIBUTE2	data
COMPONENT-ATTRIBUTE3	data
COMPONENT-ATTRIBUTE4	data
COMPONENT-ATTRIBUTE5	data
COMPONENT-ATTRIBUTE6	data
COMPONENT-ATTRIBUTE7	data
COMPONENT-ATTRIBUTE8	data

Bellows / Slip Joint / Cut-Pipe

Bellow / Slip Joint / Cut-pipe from CAEPIPE are transferred to PCF as "MISC-COMPONENT" along with their attributes as shown below.

The co-ordinate corresponding to "From" and "To" node of the element is written to "END-POINT" attributes.

The mid-point computed using the "From" and "To" node of the element is written to "CENTRE-POINT" attribute.

For standard component sizes, the Nominal Size (NS) corresponding to Outer Diameter (OD) of the element is written to "Size" attributes in "inch" for English Units and "mm" for SI Units. For non-standard component sizes, OD of the element is written to "Size" attribute.

The material properties (Name and Grade) defined for the element via "Material" property is written to PCF using the "ITEM-CODE" attribute.

The SKEY attribute is written as EXPJ, SLIP and CUTP for Bellows, Slip Joint and Cut-Pipe respectively.

Section properties defined for the element (via section property) such as OD, Wall Thickness, Corrosion Allowance, Mill tolerance, Insulation Density and Insulation Thickness are written to "COMPONENT-ATTRIBUTE1" through "COMPONENT-ATTRIBUTE6" as explained above.

Temperature T1 and Pressure P1 defined for the element via "Load" property is written to "COMPONENT-ATTRIBUTE7" and "COMPONENT-ATTRIBUTE8" respectively as explained above.

Empty weight of bellow is transferred to "WEIGHT" attribute in 'lb' for English Units and 'kg' for SI Units.

The properties other than those explained above are ignored and not transferred to PCF at this time for Bellows / Slip Joint / Cut-Pipe.

Component Identifier

MISC-COMPONENT

Mandatory Attributes

END-POINT	E/W co-ords	N/S
END-POINT	E/W co-ords	N/S
CENTRE-POINT	E/W co-ords	N/S

/S co-ords /S co-ords /S co-ords Elevation co-ords Elevation co-ords Elevation co-ords Size Size

Material Information Attributes

ITEM-CODE	data
FABRICATION-ITEM	data
SKEY	EXPJ / SLIP / CUTP

Supplementary Information Attributes

COMPONENT-ATTRIBUTE1	data
COMPONENT-ATTRIBUTE2	data
COMPONENT-ATTRIBUTE3	data
COMPONENT-ATTRIBUTE4	data
COMPONENT-ATTRIBUTE5	data
COMPONENT-ATTRIBUTE6	data
COMPONENT-ATTRIBUTE7	data
COMPONENT-ATTRIBUTE8	data
WEIGHT	data [only for Bellows]

Flange

Rigid element (with length < OD) and Flange from CAEPIPE is transferred to PCF as "FLANGE" along with their attributes as shown below.

For rigid element, the co-ordinate corresponding to "From" and "To" node is written to "END-POINT" attributes. On the other hand, for flange, the co-ordinate corresponding to flange node is written to "END-POINT" attributes. As the length of flange is zero in CAEPIPE (being a nodal property), both "END-POINT" attributes will have the same values.

For standard component sizes, the Nominal Size (NS) corresponding to Outer Diameter (OD) of the rigid element / flange defined via section property is written to "Size" attributes in "inch" for English Units and "mm" for SI Units. For non-standard component sizes, OD of the rigid element / flange is written to "Size" attribute.

The material properties (Name and Grade) defined for the rigid element / flange via "Material" property is written to PCF using the "ITEM-CODE" attribute.

The SKEY attribute is written as "FL**".

Section properties defined for the rigid element / flange (via section property) such as OD, Wall Thickness, Corrosion Allowance, Mill tolerance, Insulation Density and Insulation Thickness are written to "COMPONENT-ATTRIBUTE1" through "COMPONENT-ATTRIBUTE6" as explained above.

Temperature T1 and Pressure P1 defined for the rigid element / flange via "Load" property is written to "COMPONENT-ATTRIBUTE7" and "COMPONENT-ATTRIBUTE8" respectively as explained above.

Empty weight of rigid element / flange is transferred to "WEIGHT" attribute in 'lb' for English Units and 'kg' for SI Units.

The properties other than those explained above are ignored and not transferred to PCF at this time

Component Identifier

FLANGE

Mandatory Attributes

END-POINT	E/W co-ords	N/S co-ords	Elevation co-ords	Size
END-POINT	E/W co-ords	N/S co-ords	Elevation co-ords	Size

Material Information Attributes

ITEM-CODE	data
FABRICATION-ITEM	data
SKEY	FL**

Supplementary Information Attributes

COMPONENT-ATTRIBUTE1	data
COMPONENT-ATTRIBUTE2	data
COMPONENT-ATTRIBUTE3	data
COMPONENT-ATTRIBUTE4	data
COMPONENT-ATTRIBUTE5	data
COMPONENT-ATTRIBUTE6	data
COMPONENT-ATTRIBUTE7	data
COMPONENT-ATTRIBUTE8	data
WEIGHT	data

Rigid

Rigid element from CAEPIPE is transferred to PCF as "INSTRUMENT" along with their attributes as shown below when the length of the rigid element is greater than the outer diameter (OD) of the element. On the other hand, when the length is less than OD of the element, then the same is transferred as "FLANGE" to PCF as explained above.

The co-ordinate corresponding to "From" and "To" node of the element is written to "END-POINT" attributes.

The mid-point computed using the "From" and "To" node of the element is written to "CENTRE-POINT" attribute.

For standard component sizes, the Nominal Size (NS) corresponding to Outer Diameter (OD) of the element is written to "Size" attributes in "inch" for English Units and "mm" for SI Units. For non-standard component sizes, OD of the element is written to "Size" attribute.

The material properties (Name and Grade) defined for the element via "Material" property is written to PCF using the "ITEM-CODE" attribute.

The SKEY attribute is written as "INST".

Section properties defined for the element (via section property) such as OD, Wall Thickness, Corrosion Allowance, Mill tolerance, Insulation Density and Insulation Thickness are written to "COMPONENT-ATTRIBUTE1" through "COMPONENT-ATTRIBUTE6" as explained above.

Temperature T1 and Pressure P1 defined for the valve element via "Load" property is written to "COMPONENT-ATTRIBUTE7" and "COMPONENT-ATTRIBUTE8" respectively as explained above.

Empty weight of rigid element is transferred to "WEIGHT" attribute in 'lb' for English Units and 'kg' for SI Units.

The properties other than those explained above are ignored and not transferred to PCF at this time.

Component Identifier

INSTRUMENT

Mandatory Attributes

END-POINT	E/W co-ords	N/S co-ords	Elevation co-ords	Size
END-POINT	E/W co-ords	N/S co-ords	Elevation co-ords	Size
CENTRE-POINT	E/W co-ords	N/S co-ords	Elevation co-ords	

Material Information Attributes

ITEM-CODE	data
FABRICATION-ITEM	data
SKEY	INST

Supplementary Information Attributes

COMPONENT-ATTRIBUTE1	data
COMPONENT-ATTRIBUTE2	data
COMPONENT-ATTRIBUTE3	data
COMPONENT-ATTRIBUTE4	data
COMPONENT-ATTRIBUTE5	data
COMPONENT-ATTRIBUTE6	data
COMPONENT-ATTRIBUTE7	data
COMPONENT-ATTRIBUTE8	data
WEIGHT	data

Data Types from CAEPIPE

Anchor

Anchor from CAEPIPE is transferred to PCF as "Support" along with the attributes as shown below. The coordinate value corresponding to Anchor node is written to "END-POINT" attribute.

The SKEY attribute is written as "ANCH".

The stiffnesses and specified displacements defined in CAEPIPE for Anchor are ignored at this time.

Component Identifier

SUPPORT

Mandatory Attributes

CO-ORDS E/W co-ords N/S co-ords

Material Information Attributes

Elevation co-ords

Size

ITEM-CODE	data
FABRICATION-ITEM	data
SKEY	ANCH

Branch SIF

Branch SIF with their sub-types are transferred from CAEPIPE to PCF as given below.

SI. No.	Sub-Type of Branch SIF	Component Identifier in PCF
1.	Welding TEE	TEE
2.	Reinforced Fabricated Tee	TEE-SET-ON
3.	Unreinforced Fabricated Tee	TEE-SET-ON
4.	Others	TEE-STUB

As Branch SIF in CAEPIPE is assigned to a node, the co-ordinate value corresponding to "Branch SIF" node is written to "END-POINT", "CENTRE-POINT" and "BRANCH1-POINT" attributes.

For standard component sizes, the Nominal Size (NS) corresponding to Run Pipe Outer Diameter (OD1) and Branch Pipe Outer Diameter (OD2) of the element is written to "Size" attributes in "inch" for English Units and "mm" for SI Units. For non-standard component sizes, OD1 and OD2 of the element are written to "Size" attributes.

The material properties (Name and Grade) defined for the element via "Material" property on which the Branch SIF is located is written to PCF using the "ITEM-CODE" attribute.

Component Identifier

TEE

Mandatory Attributes

END-POINT	E/W co-ords	N/S co-ords	Elevation co-ords	Size
END-POINT	E/W co-ords	N/S co-ords	Elevation co-ords	Size
CENTRE-POINT	E/W co-ords	N/S co-ords	Elevation co-ords	
BRANCH1-POINT	E/W co-ords	N/S co-ords	Elevation co-ords	Size

Material Information Attributes

ITEM-CODE	data
FABRICATION-ITEM	data
SKEY	TEBW

Reinforced / Unreinforced Fabricated Tee

Component Identifier

TEE-SET-ON

Mandatory Attributes

BRANCH1-POINT CENTRE-POINT	E/W co-ords E/W co-ords	N/S co-ords N/S co-ords	Elevation co-ords Elevation co-ords	Size
Material Information A	ttributes			
ITEM-CODE	data			
FABRICATION-ITEM	l data			

N/S co-ords

N/S co-ords

Elevation co-ords

Elevation co-ords

	uala
FABRICATION-ITEM	data
SKEY	TESO

Other Tees

Component Identifier

TEE-STUB

Mandatory Attributes

BRANCH1-POINT	E/W co-ords
CENTRE-POINT	E/W co-ords

Material Information Attributes

ITEM-CODE	data
FABRICATION-ITEM	data
SKEY	TSSO

Size

Guide

Guide from CAEPIPE is transferred to PCF as "Support" along with the attributes as shown below.

The co-ordinate value corresponding to Guide node is written to "END-POINT" attribute.

For standard component sizes, the Nominal Size (NS) corresponding to Outer Diameter (OD) of the element in which the guide is defined is written to "Size" attributes in "inch" for English Units and "mm" for SI Units. For non-standard component sizes, OD of the element are written to "Size" attribute.

The Friction, Stiffness [lb/in or N/mm] and Gap [in or mm] defined at Guide are transferred to "COMPONENT-ATTRIBUTE1", "COMPONENT-ATTRIBUTE2" and "COMPONENT-ATTRIBUTE3" respectively.

Component Identifier

SUPPORT

Mandatory Attributes

CO-ORDS	E/W
---------	-----

N/S co-ords

Elevation co-ords

Size

Material Information Attributes

ITEM-CODE	data
FABRICATION-ITEM	data
SKEY	GUI

Supplementary Information Attributes

COMPONENT-ATTRIBUTE1	data
COMPONENT-ATTRIBUTE2	data
COMPONENT-ATTRIBUTE3	data

co-ords

Hanger

Hanger from CAEPIPE is transferred to PCF as "Support" along with the attributes as shown below.

The co-ordinate value corresponding to Hanger node is written to "END-POINT" attribute.

For standard component sizes, the Nominal Size (NS) corresponding to Outer Diameter (OD) of the element in which the hanger is located is written to "Size" attributes in "inch" for English Units and "mm" for SI Units. For non-standard component sizes, OD of the element are written to "Size" attribute.

The SKEY attribute is written as "SPRG".

The hanger type and number of hangers entered in CAEPIPE are transferred to "COMPONENT-ATTRIBUTE1" and "COMPONENT-ATTRIBUTE2 respectively.

Component Identifier

SUPPORT

Mandatory Attributes

CO-ORDS	E/W co-ords	N/S co-ords	Elevation co-ords	Size
Material Information	on Attributes			
ITEM-CODE	data			
FABRICATION-I	ΓEM data			
SKEY	SPRG			

Supplementary Information Attributes

COMPONENT-ATTRIBUTE1	data
COMPONENT-ATTRIBUTE2	data

User Hanger

User Hanger from CAEPIPE is transferred to PCF as "Support" along with the attributes as shown below.

The co-ordinate value corresponding to User Hanger node is written to "END-POINT" attribute.

For standard component sizes, the Nominal Size (NS) corresponding to Outer Diameter (OD) of the element in which the user hanger is defined is written to "Size" attributes in "inch" for English Units and "mm" for SI Units. For non-standard component sizes, OD of the element are written to "Size" attribute. The SKEY attribute is written as "HANG".

The Spring Stiffness [lb/in or N/mm], Number of hangers, Load [lb or N] and load type [HOT or COLD] defined at User Hanger are transferred to "COMPONENT-ATTRIBUTE1", "COMPONENT-ATTRIBUTE2", "COMPONENT-ATTRIBUTE3" and "COMPONENT-ATTRIBUTE4" respectively.

Component Identifier

SUPPORT

Mandatory Attributes

CO-ORDS	E/W co-ords	N/S co-ords	Elevation co-ords	Size
Material Information	on Attributes			
ITEM-CODE	data			
FABRICATION-I	TEM data			
SKEY	HANG			

Supplementary Information Attributes

COMPONENT-ATTRIBUTE1	data
COMPONENT-ATTRIBUTE2	data
COMPONENT-ATTRIBUTE3	data
COMPONENT-ATTRIBUTE4	data

Rod Hanger

Rod Hanger from CAEPIPE is transferred to PCF as "Support" along with the attributes as shown below.

The co-ordinate value corresponding to Rod Hanger node is written to "END-POINT" attribute.

For standard component sizes, the Nominal Size (NS) corresponding to Outer Diameter (OD) of the element in which the rod hanger is defined is written to "Size" attributes in "inch" for English Units and "mm" for SI Units. For non-standard component sizes, OD of the element are written to "Size" attribute.

The SKEY attribute is written as "ROD".

The Number of hangers defined at Rod hanger of CAEPIPE is transferred to "COMPONENT-ATTRIBUTE1".

Component Identifier

SUPPORT

Mandatory Attributes

CO-ORDS E/W co-ords

N/S co-ords

Elevation co-ords Size

Material Information Attributes

ITEM-CODE	data
FABRICATION-ITEM	data
SKEY	ROD

Supplementary Information Attributes

COMPONENT-ATTRIBUTE1 data

Constant Support

Constant Support from CAEPIPE is transferred to PCF as "Support" along with the attributes as shown below.

The co-ordinate value corresponding to Constant Support node is written to "END-POINT" attribute.

For standard component sizes, the Nominal Size (NS) corresponding to Outer Diameter (OD) of the element in which the constant support is defined is written to "Size" attributes in "inch" for English Units and "mm" for SI Units. For non-standard component sizes, OD of the element are written to "Size" attribute.

The SKEY attribute is written as "CS".

The Number of hangers defined at this support in CAEPIPE is transferred to "COMPONENT-ATTRIBUTE1". **Component Identifier**

SUPPORT

Mandatory Attributes

CO-ORDS E/W co-ords

N/S co-ords

Elevation co-ords

Size

Material Information Attributes

ITEM-CODE data FABRICATION-ITEM data SKEY CS

Supplementary Information Attributes

COMPONENT-ATTRIBUTE1 data

Limit Stop

Limit Stop from CAEPIPE is transferred to PCF as "Support" along with the attributes as shown below.

The co-ordinate value corresponding to Limit Stop node is written to "END-POINT" attribute.

For standard component sizes, the Nominal Size (NS) corresponding to Outer Diameter (OD) of the element in which the limit stop is defined is written to "Size" attributes in "inch" for English Units and "mm" for SI Units. For non-standard component sizes, OD of the element are written to "Size" attribute.

The Upper Limit [in or mm], Lower Limit [in or mm], Stiffness [lb/in or N/mm] and Friction defined at Limit Stop are transferred to "COMPONENT-ATTRIBUTE1", "COMPONENT-ATTRIBUTE2", "COMPONENT-ATTRIBUTE3" and "COMPONENT-ATTRIBUTE4" respectively. The value of SKEY attribute is written as LSX when the direction is defined as (1.0, 0.0, 0.0), LSY when the direction is defined as (0.0, 1.0, 0.0), LSZ when the directions.

Component Identifier

SUPPORT

Mandatory Attributes

 CO-ORDS
 E/W co-ords
 N/S co-ords
 Elevation co-ords
 Size

 Material Information Attributes
 ITEM-CODE
 data

 FABRICATION-ITEM
 data

 SKEY
 LIM / LSX /LSY / LSZ

Supplementary Information Attributes

COMPONENT-ATTRIBUTE1	data
COMPONENT-ATTRIBUTE2	data
COMPONENT-ATTRIBUTE3	data
COMPONENT-ATTRIBUTE4	data

E/W co-ords

Nozzle

Nozzle from CAEPIPE is transferred to PCF as "Nozzle" along with the attributes as shown below.

The co-ordinate value corresponding to Nozzle node is written to "END-POINT" attribute.

For standard component sizes, the Nominal Size (NS) corresponding to Outer Diameter (OD) of the element in which the nozzle is defined is written to "Size" attributes in "inch" for English Units and "mm" for SI Units. For non-standard component sizes, OD of the element are written to "Size" attribute.

N/S co-ords

Elevation co-ords

Component Identifier

NOZZLE

Restraint

Mandatory Attributes

CO-ORDS

5-0105

Restraint from CAEPIPE is transferred to PCF as "Support" along with the attributes as shown below.

The co-ordinate value corresponding to Restraint node is written to "END-POINT" attribute.

Size

For standard component sizes, the Nominal Size (NS) corresponding to Outer Diameter (OD) of the element in which the restraint is defined is written to "Size" attributes in "inch" for English Units and "mm" for SI Units. For non-standard component sizes, OD of the element are written to "Size" attribute.

The SKEY value will be filled with type of "Restraint" defined in CAEPIPE. For example, X and Z defined at a "Restraint" in CAEPIPE will be written to SKEY of PCF as "XZ"

Component Identifier

SUPPORT

Mandatory Attributes

CO-ORDS E/W co-ords
Material Information Attributes

N/S co-ords

Elevation co-ords

Size

ITEM-CODE	data
FABRICATION-ITEM	data
SKEY	data

Skewed Restraint

Skewed Restraint from CAEPIPE is transferred to PCF as "Support" along with the attributes as shown below.

The co-ordinate value corresponding to Skewed Restraint node is written to "END-POINT" attribute.

For standard component sizes, the Nominal Size (NS) corresponding to Outer Diameter (OD) of the element in which the skewed restraint is defined is written to "Size" attributes in "inch" for English Units and "mm" for SI Units. For non-standard component sizes, OD of the element are written to "Size" attribute.

Translational Stiffness [Ib/in or N/mm] or Rotational Stiffness [in-Ib/deg or N-m/deg] defined in CAEPIPE will be transferred to COMPONENT-ATTRIBUTE1 of PCF. The value of SKEY is filled as TX, TY and TZ for Translational Restraint defined in X, Y and Z directions respectively. Similarly, for Rotational Restraint, the value of SKEY is filled as RX, RY and RZ for Rotational Restraint defined in X, Y and Z directions respectively. For Translational and Rotational Restraint defined in directions other than X, Y and Z, the value of SKEY is filled as "SKEW".

Component Identifier

SUPPORT

Mandatory Attributes

CO-ORDS	E/W co-ords	N/S co-ords	Elevation co-ords	Size
Material Informatio	n Attributes			
ITEM-CODE FABRICATION-IT SKEY		/ RX/RY/RZ/SKEW		
Supplementary Info	ormation Attributes			

COMPONENT-ATTRIBUTE1 data

Snubber

Snubber from CAEPIPE is transferred to PCF as "Support" along with the attributes as shown below.

The co-ordinate value corresponding to Snubber node is written to "END-POINT" attribute.

For standard component sizes, the Nominal Size (NS) corresponding to Outer Diameter (OD) of the element in which the snubber is defined is written to "Size" attributes in "inch" for English Units and "mm" for SI Units. For non-standard component sizes, OD of the element are written to "Size" attribute.

Stiffness [lb/in or N/mm] defined in CAEPIPE will be transferred to COMPONENT-ATTRIBUTE1 of PCF. The value of SKEY is filled as XSNB, YSNB and ZSNB for snubber defined in X, Y and Z directions respectively. For direction of snubber other than X, Y and Z, the value is written as "SNUB".

Component Identifier

SUPPORT

Mandatory Attributes

CO-ORDS E/W co-ords N/S co-ords

Size

Material Information Attributes

ITEM-CODE data FABRICATION-ITEM data SKEY

XSNB / YSNB / ZSNB /SNUB

Supplementary Information Attributes

COMPONENT-ATTRIBUTE1 data

Generic Support

Generic Support from CAEPIPE is transferred to PCF as "Support" along with the attributes as shown below.

The co-ordinate value corresponding to Generic Support node is written to "END-POINT" attribute.

For standard component sizes, the Nominal Size (NS) corresponding to Outer Diameter (OD) of the element in which the generic support is defined is written to "Size" attributes in "inch" for English Units and "mm" for SI Units. For non-standard component sizes, OD of the element are written to "Size" attribute.

The stiffnesses defined in CAEPIPE for Generic Support are ignored at this time

Component Identifier

SUPPORT

Mandatory Attributes

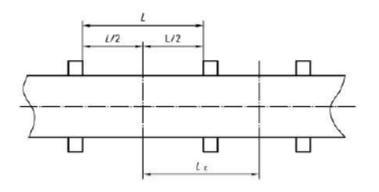
CO-ORDS E/W co-ords **Material Information Attributes**

N/S co-ords

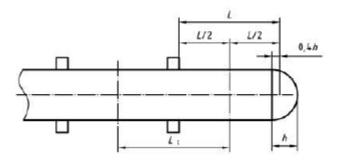
Elevation co-ords Size

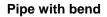
ITEM-CODE data FABRICATION-ITEM data GNSP SKEY

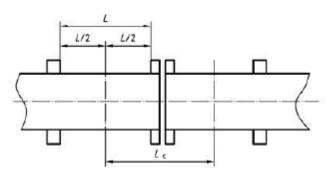
Annexure B Pressure Design of Pipe and Pipe Fittings according to EN 13480-3 (2012)

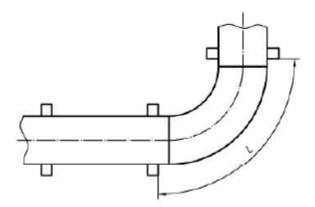

Pressure Design of Pipe and Pipe Fittings according to EN 13480-3 (2012)

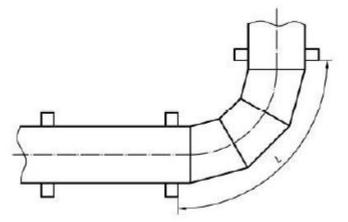
Pressure Design of Pipe and Pipe Fittings can be performed using the pre-processor modules added in CAEPIPE which are independent of the flexibility analysis.


These modules can be launched through Layout frame > Misc > Internal Pressure Design: EN 13480-3 and Layout frame > Misc > External Pressure Design: EN 13480-3 respectively.


Internal pressure design calculations of pipe and pipe fittings according to EN 13480-3 are independent of lengths of pipes defined in CAEPIPE stress model. Hence, these calculations can be performed directly from the existing stress model developed for flexibility analysis.


On the other hand, the external pressure design requires the calculation of collapse pressure, which is a function of length between the stiffeners placed on the piping (shown in figures below). Hence, ensure that the nodes are defined in CAEPIPE model <u>only</u> at locations where the stiffeners are provided along the piping in the field. In other words, the existing CAEPIPE stress model (developed for flexibility analysis) need to be edited before performing the external pressure design.


Single Pipe



Pipe with flange connections

Pipe with bend or elbow with 'L' measured on extrados

Pipe with mitre with 'L' measured on extrados

The procedure given below will help in removing the additional nodes defined for support locations (for flexibility analysis) from the CAEPIPE stress model prior to External Pressure Design Calculations.

- 1. Create a copy of the existing CAEPIPE stress model (developed for flexibility analysis).
- Navigate to the required element node in the layout window and use the option "Combine..." through Layout window > Edit.
- 3. Repeat Step 2 above and remove all other nodes where there are no stiffeners defined.
- 4. Upon completion, save the model.
- 5. Launch "External Pressure Design: EN 13480-3" through Layout window > Misc.

Internal Pressure Design of Pipe and Pipe Fittings according to EN 13480-3 (2012)

Design of pipe and pipe fittings under internal pressure according to EN 13480-3 (2012)

Straight Pipes

The minimum required wall thickness for a straight pipe without allowances and tolerances, ep, is calculated from equation 6.1-1 and 6.1-3 depending on the ratio between inner and outer diameter as follows:

For $D_o/D_i \le 1.7$

$$ep = \frac{P_c D_0}{2fz + P_c}$$

For $D_0/D_i > 1.7$

$$ep = \frac{D_o}{2} \left[1 - \sqrt{\frac{fz - p_c}{fz + p_c}} \right]$$

where,

 D_o = outside diameter of pipe

 D_i = inside diameter of pipe = $Do - 2 \times e_n$

 e_n = nominal wall thickness of pipe

f = Allowable stress for material at maximum temperature

z = weld efficiency factor = 1.0

p_c = maximum pressure = maximum of CAEPIPE input pressures P1 through P10

ep = minimum required wall thickness

Elbows

The minimum required wall thickness of the intrados and the extrados of the elbow without allowances and tolerances, ep1 / ep2, is calculated from equation B.4.1-3

ep1 = ep2 = e.B
$$B = \frac{D_0}{2e} - \frac{R}{e} + \sqrt{\left[\frac{D_0}{2e} - \frac{R}{e}\right]^2 + 2\frac{R}{e} - \frac{D_0}{2e}}$$

where

D_o = outside diameter of elbow

e = minimum required wall thickness of corresponding straight pipe computed as per Eq. 6.1-1 or 6.1-3

R = radius of the elbow

ep1 = ep2 = minimum required wall thickness of the elbow

Bends (formed by cold bending of straight pipes)

Wall thickness of the intrados of the bend

The minimum required wall thickness of the intrados of the bend without allowances and tolerances, ep1, is calculated from equation B.4.1-1

$$ep1 = e \cdot B_{int}$$

$$B_{int} = \frac{D_0}{2e} + \frac{r}{e} - \left[\frac{D_o}{2e} + \frac{r}{e} - 1\right] \sqrt{\frac{\left(\frac{r}{e}\right)^2 - \left(\frac{D_o}{2e}\right)^2}{\left(\frac{r}{e}\right)^2 - \frac{D_o}{2e}\left(\frac{D_o}{2e} - 1\right)}}$$

r/e is calculated from

$$\frac{r}{e} = \sqrt{\frac{1}{2} \left\{ \left(\frac{D_o}{2e}\right)^2 + \left(\frac{R}{e}\right)^2 \right\}} + \sqrt{\frac{1}{4} \left(\left(\frac{D_o}{2e}\right)^2 + \left(\frac{R}{e}\right)^2 \right)^2 - \frac{D_o}{2e} \left(\frac{D_o}{2e} - 1\right) \left(\frac{R}{e}\right)^2}$$

where

D_o = outside diameter of bend

 D_i = inside diameter of bend = $Do - 2 \times e_n$

e = minimum required wall thickness of corresponding straight pipe computed as per Eq. 6.1-1 or 6.1-3

R = radius of the bend

 e_{p1} = minimum required wall thickness of the intrados

Wall thickness of the extrados of the bend

The minimum required wall thickness of the extrados of the bend without allowances and tolerances, ep2, is calculated from equation B.4.1-8

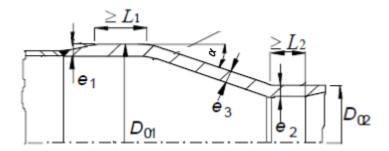
ep2 = e . B_{ext}
$$B_{ext} = \frac{D_0}{2e} - \frac{r}{e} - \left[\frac{D_o}{2e} - \frac{r}{e} - 1\right] \sqrt{\frac{\left(\frac{r}{e}\right)^2 - \left(\frac{D_o}{2e}\right)^2}{\left(\frac{r}{e}\right)^2 - \frac{D_o}{2e}\left(\frac{D_o}{2e} - 1\right)}}$$

r/e is calculated from

$$\frac{r}{e} = \sqrt{\frac{1}{2} \left\{ \left(\frac{D_o}{2e}\right)^2 + \left(\frac{R}{e}\right)^2 \right\}} + \sqrt{\frac{1}{4} \left(\left(\frac{D_o}{2e}\right)^2 + \left(\frac{R}{e}\right)^2 \right)^2 - \frac{D_o}{2e} \left(\frac{D_o}{2e} - 1\right) \left(\frac{R}{e}\right)^2}$$

where

D_o = outside diameter of bend


 D_i = inside diameter of bend = $Do - 2 \times e_n$

e = minimum required wall thickness of corresponding straight pipe computed as per Eq. 6.1-1 or 6.1-3

R = radius of the bend

ep2 = minimum required wall thickness of the extrados

Reducers

Junction between the large end of a cone and a cylinder without a knuckle

The minimum required wall thickness (e_1) of the larger cylinder adjacent to the junction is calculated from Subsection 6.4.6.2 as the greater of e_{cyl} and e_j where e_j is determined from

$$\beta = \frac{1}{3} \sqrt{\frac{D_c}{e_j} \frac{\tan \alpha}{1 + \frac{1}{\sqrt{\cos \alpha}}}} - 0.15 \qquad (Eq. 6.4.6 - 2)$$
$$e_j = \frac{p_{c\beta D_c}}{2f} \qquad (Eq. 6.4.6 - 1)$$

The value of ei is acceptable, if the value given by Eq. 6.4.6-1 is not less than that assumed in Eq. 6.4.6-2

$$e_{con} = \frac{p_c D_e}{2fZ + p_c} \frac{1}{COS(\alpha)}$$

$$e_{cyl} = \frac{p_c D_{01}}{2fZ + p_c}$$

$$e_1 = thickness of larger cylinder = max(e_j, e_{cyl})$$

$$e_3 = thickness of cone shell = max(e_j, e_{con})$$
(Eq. 6.4.4 - 2)

where

 D_e = outside diameter of the cone

D₀₁ = outside diameter of the larger cylinder

D₀₂ = outside diameter of the small cylinder

 D_c = mean diameter of the larger cylinder at the junction with the cone = D_{01} - e_n

en = nominal wall thickness of the larger cylinder at the junction with the cone

\propto = cone angle

e₁ = minimum required wall thickness for larger cylinder adjacent to the junction.

 e_3 = minimum required wall thickness at cone.

f = Allowable stress for material at maximum temperature

а D

 p_c = maximum pressure = maximum of CAEPIPE input pressures P1 through P10

Z = weld efficiency factor = 1.0

Junction between the small end of a cone and a cylinder without a knuckle

The minimum required wall thickness (e_2) of the small cylinder adjacent to the junction is calculated according to Subsection 6.4.8.2 as follows.

$$s = \frac{e_3}{e_{j2}}$$

With e_3 already determined in the earlier section, assume value of e_{j2} and calculate the values of s, τ and β_H When s < 1.0, then

$$\tau = s \sqrt{\frac{s}{\cos \alpha}} + \sqrt{\frac{1+s^2}{2}}$$

When $s \ge 1.0$, then

$$\tau = 1 + \sqrt{s \frac{1 + s^2}{2\cos\alpha}}$$

$$\beta_{H} = 0.4 \sqrt{\frac{D_{c}}{e_{j2}}} \frac{tan \propto}{\tau} + 0.5 \qquad (Eq. \ 6.4.8 - 4)$$
$$e_{j2} = \frac{p_{c} D_{c} \beta_{H}}{2fZ} \qquad (Eq. \ 6.4.8 - 5)$$

The value of e_{j2} is acceptable, if the value given by Eq. 6.4.8-5 is not less than that assumed for Eq. 6.4.8-4

$$e_{cyl} = \frac{p_c D_{02}}{2fZ + p_c}$$
$$e_2 = max(e_{j2}, e_{cyl})$$

where

 D_{02} = outside diameter of the small cylinder at the junction with the cone

 D_c = mean diameter of the small cylinder at the junction with the cone = D_{02} - e_n

 e_n = nominal wall thickness of the small cylinder at the junction with the cone

 \propto = cone angle

e₂ = minimum required wall thickness of the small cylinder at the junction with the cone

f = Allowable stress for material at maximum temperature

pc = maximum pressure = maximum of CAEPIPE input pressures P1 through P10

Z = weld efficiency factor = 1.0

Verification and Validation for Internal Pressure Design of Pipe and Pipe Fittings

acco		raight Pipe due to Int N 13480-3:2012 (E) I		
<u>General</u>				
Material		EN 10216-2 10CrM	59-10 W1.73	80
Design Tempe	erature (Deg.C)	T_d		
Design Stress	(MPa)	f		
Design Pressu	ıre (MPa)	Pc		
Weld efficien Iongitudinal v	-	1.00		
Outer Diameter (mm)		Do		
Nominal Wall Pipe (mm)	Thickness in Stra	enom		
Corrosion Allo	owance (mm)	$C_0 = 1.00$		
Negative Tole	erance	<i>C</i> ₁		
Thinning allow	wance due to			
manufacturin		<i>C</i> ₂		
Set paramete	r "Uniform Bend'	' below to "Yes" or "No" or	"NA"	
<u>Input</u>				
	25		221	
	50		221	
DN :=	150	Td :=	221	
	200		221	
	300		221	
	350		221	
	400		221	
	500		221	

	25		132.8		2.26
	50		132.8		2.26
DN :=	150	f :=	132.8	Pc :=	2.26
	200		132.8		2.26
	300		132.8		2.26
	350		132.8		2.26
	400		132.8		2.26
	500		132.8		2.26
	25		33.7		2.6
	50		60.3		2.9
DN :=	150	Do :=	168.3	enom :=	4.5
	200		219.1		6.3
	300		323.9		7.1
	350		355.6		8
	400		406.4		8.8
	500		508		11
	25		0.325		0
	50		0.3625		0
DN :=	150	C1 :=	0.5625	C2 :=	0
	200		0.7875		0
	300		0.8875		0
	350		1		0
	400		1.1		0
	500		1.375		0
Result					
Straight Pipe	2				
Minimum required wall thickness		s ep			
Analysis wall thickness		ea			
Utilization factor shall be less than or equal to 1:		n Up=ep/ea			

	25			1.28		1.18
	50			1.54	D ₀	1.11
DN :=	150		e a :=	2.94	$\overline{D_0 - 2e_{nom}}$	1.06
	200			4.51	:=	1.06
	300			5.21		1.05
	350			6.00		1.05
	400			6.70		1.05
	500			8.63		1.05
D		ממ			<u> </u>	
$\inf \frac{D_0}{D_0 - 2e_{no}}$	$\frac{-}{m} < 1.7, t$	hen $e = \frac{P_c D_0}{2f z + P_0}$	(6.1-1) else $e = \frac{1}{2}$	$\frac{J_0}{2} \left 1 - \sqrt{\frac{fz}{fz}} \right $	$\frac{-p_c}{+p_c}$ (6.1-3)	
	25			0.28		0.22
	50			0.51		0.33
DN :=	150		e p :=	1.42	U p :=	0.48
	200			1.85		0.41
	300			2.73		0.52
	350			3.00		0.50
	400			3.43		0.51
	500			4.29		0.50

				rnal Pressure accordi 2(E) Issue 1 (2012-06	-
			400 3.2012		
<u>General</u>					
Material		EN 10216-2 1	0CrMo9-10 W	1.7380	
Design Ter	nperature (Deg.C)	T _d			
Design Stre	ess (MPa)	f			
Design Pre	ssure (MPa)	P _c			
Weld effic Iongitudin	iency factor for al weld	Z	1.00		
Outer Dian	neter (mm)	Do			
Nominal W Straight Pi	/all Thickness in pe (mm)	e _{nom}			
Nominal W bend intra	/all Thickness of dos (mm)	e _{intnom}			
Nominal W bend extra	/all Thickness of idos (mm)	e _{extnon}			
Bend Radiu	us (mm)	R			
Corrosion	Allowance (mm)	<i>C</i> ₀ =	1.00		
Negative T	olerance	<i>C</i> ₁			
Thinning a	llowance due to	<i>C</i> ₂			
Set parame	eter "Uniform Elbov	w" below to "Yes	s" or "No" or "N	IA"	
<u>Input</u>					
	150		Yes		221
DN :=	200	Uniform Elbow :=	Yes	Td :=	221
	300		Yes		221
	350 350		Yes Yes		221 221
	400		Yes		221
	500		Yes		221

	150		132.8		2.26
DN :=	200	f :=	132.8	Pc:=	2.26
	300		132.8		2.26
	350		132.8		2.26
	350		132.8		2.26
	400		132.8		2.26
	500		132.8		2.26
	150		168.3		4.5
DN :=	200	Do :=	219.1	enom :=	6.3
	300		323.9		7.1
	350		355.6		8
	350		355.6		8
	400		406.4		8.8
	500		508		11
	150		229		0.5625
DN :=	200	R :=	305	C 1 :=	0.7875
	300		457		0.8875
	350		533		1
	350		356		1
	400		610		1.1
	500		762		1.375
	150		0		
DN :=	200	C2 :=	0		
	300		0		
	350		0		
	350		0		
	400		0		
	500		0		
A					
thickness	equired wall	ep			
Analysis wa	all thickness	ea			
Iltilization	factor shall be less				
than or equ		Uf			
	150		2.94	Do	1.04
DN :=	200	e a :=	4.51	$\frac{D_0}{D_0 - 2e_a} :=$	1.04
	300		5.21		1.03
	350		6.00		1.03
	350		6.00		1.03
	400		6.70		1.03
	500		8.63		1.03

		D D	-	, [, , , , , , , , , , , , , , , , , ,		
if $\frac{D_0}{D_0}$	– < 1.7, then	$e = \frac{P_c D_0}{2f z + P_c}$ (6.1-1) e	lse $e = \frac{1}{2}$	$\frac{p_0}{1}$ 1 –	$\frac{fz-p_c}{c}$ (6.1-3)	
$D_0 - 2e_{non}$	n	$2fz+P_c$		2 [√	$fz+p_c$	
	150		1.42			
		0				
DN :=	200	e p := e =	1.85			
	300		2.73			
	350		3.00			
	350		3.00			
	400		3.43			
	500		4.29			
Result						
Elbows with	n Uniform Thio	kness				
eint = eext =	ер В					
		p1 ² p p				
$B = \frac{D_0}{2a}$	$-\frac{R}{2} + \sqrt{\frac{D_0}{22}} -$	$\left[\frac{R}{e}\right]^2 + 2\frac{R}{e} - \frac{D_0}{2e}$	(B.4	.1-11)		
20	e vize	el e ze				
	150		161.27			59.2
DN :=	200	R/e p :=	164.99		D0/2ep :=	59.2
	300		167.23			59.2
	350		177.65			59.2
	350		118.66			59.2
	400		177.90			59.2
	500		177.78			59.2
	150		1.28			1.8
DN :=	200	B :=	1.27		eint = eext :=	2.3
	300		1.27			3.4
	350		1.27			3.7
	350		1.48			4.4
	400		1.40			4.4
	500		1.24			5.3
	500		1.24			5.5
	150		0.62			
	150		0.62			
DN :=	200	U f :=	0.52			
	300		0.66			
	350		0.62			
	350		0.74			
	400		0.64			
	500		0.62			

					2-06)
	FN 10216-2 1	0CrMo9-10 W	1.7380		
			1.7500		
erature (Deg.C)	T_d				
s (MPa)	f				
ure (MPa)	P _c				
ou factor far					
-	Z	1.00			
vvelu					
ter (mm)	D				
/	ν_0				
l Thickness of	eintnom				
s (mm)					
	<i>e_{extnon}</i>				
os (mm)					
(mm)	D				
(11111)	κ ₁				
owance (mm)	$C_0 =$	1.00			
	-0				
erance	<i>C</i> ₁				
	-1				
wance due to	<i>C</i> ₂				
er "Uniform Bend	l" below to "Yes"	or "No" or "NA	\ "		
150		Yes		221	
130	Uniform	105			
200		Yes	Td :=	221	
300		Yes		221	
350		Yes		221	
350		Yes		221	
400		Yes		221	
500		Yes		221	
	cording to Ch erature (Deg.C) is (MPa) ure (MPa) hcy factor for weld ter (mm) I Thickness of s (mm) I Thickness of s (mm) I Thickness of os (mm) (mm) owance (mm) erance wance due to er "Uniform Benc is (mm) is (mm)	cording to Chapter 6.2.3.3EN 10216-2 10EN 10216-2 10erature (Deg.C) T_d T_d f are (MPa) P_c <tr <td="">P</tr>	cording to Chapter 6.2.3.3 of SS-EN 13 EN 10216-2 10CrMo9-10 W erature (Deg.C) T_d is (MPa) f ure (MPa) P_c nuy factor for weld D_o 1 Thickness of e_{intnom} is (mm) D_o 1 Thickness of e_{extnon} is (mm) R_1 owance (mm) $C_0 = 1.00$ erance C_1 wance due to C_2 er "Uniform Bend" below to "Yes" or "No" or "N/ 150 Yes 150 Yes 300 Second	cording to Chapter 6.2.3.3 of SS-EN 13480-3:2012(E) I EN 10216-2 10Cr/Mo9-10 W1.7380 erature (Deg.C) T_d G MPa) f $G (MPa)$ f $G (MPa)$ f $G (MPa)$ f G $G (MPa)$ f G $G (MPa)$ f G $G (MPa)$ f G G $G (MPa)$ G	erature (Deg.C) T_d f f h

	150		132.8		2.26	
DN :=	200	f :=	132.8	Pc :=	2.26	
	300		132.8		2.26	
	350		132.8		2.26	
	350		132.8		2.26	
	400		132.8		2.26	
	500		132.8		2.26	
	150		168.3		4.5	
				eintnom =		
DN :=	200	Do :=	219.1	e extnom :=	6.3	
DN		D0		Cextiloin		
	300		323.9		7.1	
	350		355.6		8	
	350		355.6			
	400		406.4		8.8	
	500		508		11	
	150		229		0.5625	
DN :=	200	R1 :=	305	C1 :=	0.7875	
	300		457		0.8875	
	350		533		1	
	350		356		1	
	400		610		1.1	
	500		762		1.375	
	150		0			
DN :=	200	C2 :=	0			
	300		0			
	350		0			
	350		0			
	400		0			
	500		0			
Minimum re						
thickness of	pipe	е				
Analysis wal	l thickness	ea				
Utilization fa	ictor shall be less					
than or equa		Uf=ep/ea				
	150		2.94	$\frac{D_0}{D_0 - 2e_a} :=$	1.04	
DN :=	200	e a :=	4.51	D_0-2e_a	1.04	
	300		5.21		1.03	
	350		6.00		1.03	
	350		6.00		1.03	
	400		6.70		1.03	
	500		8.63		1.04	

: 4 D ₀	< 17 them a	$P_c D_0$ (6.1.1)	P_{0}	D_i (6.1.0)				
$\prod_{D_0-2e_a}$	< 1.7, then e	$e = \frac{P_c D_0}{2f z + P_c}$ (6.1-1) e	else $e = \frac{1}{2fz}$	$r = P_c$ (0.1-2))			
	150		1 40					
	150		1.42					
DN :=	200	e :=	1.85					
	300		2.73					
	350		3.00					
	350		3.00					
	400		3.43					
	500		4.29					
Result								
ipe Bend	with Uniform	n Thickness						
eint = e Bi	nt							
ext = e Be	ext							
		$(r)^2$ (1	$\frac{1}{2}$					
$B_{int} = \frac{I}{2}$	$\frac{D_0}{r} + \frac{r}{r} - \left[\frac{D_0}{r}\right]$	$\left(\frac{r}{e}-1\right) \sqrt{\frac{\left(\frac{r}{e}\right)^2 - \left(\frac{1}{2}\right)^2}{\left(\frac{r}{e}\right)^2 - \frac{D_0}{2q}}}$	$\left(\frac{2e}{2e}\right)$			(B.4.1-3)		
$2 \ln t$ 2	le e L2e	$e \int \sqrt{\left(\frac{r}{e}\right)^2 - \frac{D_0}{2e}}$	$\left(\frac{D_0}{2e}-1\right)$			(81111-0)		
						`		
			<u>, 2</u>					
$\frac{r}{1} = \frac{1}{1} \left\{ \left(\frac{1}{1} \right)^2 \right\}$	$\left(\frac{D_0}{D_0}\right)^2 + \left(\frac{R}{D_0}\right)^2$	$+\sqrt{\frac{1}{4}\left(\left(\frac{D_0}{2e}\right)^2+\left(\frac{R}{e}\right)^2\right)^2}$	$\binom{D_0}{D_0}$	$(-1)\left(\frac{R}{2}\right)^2$		(B.4.1-4)		
e 2(\	2e) ' (e))	$\sqrt{4(2e)}$) 2e \2e	1) (e)		(0.4.1 4)		
V								
	150		161.27			59.26		161.4
DN :=	200	R/e :=	164.99		D0/2e :=	59.26	r/e :=	165.2
	300	-	167.23			59.26	-	167.4
	350		177.65			59.26		177.8
	350		118.66			59.26		118.9
	400		177.90			59.26		178.0
	500		177.78			59.26		177.9
	150		1.29			1.83		
DN :=	200	Bint :=	1.28		eint :=	2.36		
	300		1.27			3.48		
	350		1.25			3.75		
	350		1.49			4.47		
	400		1.25			4.28		
	500		1.25			5.35		

	150			0.62			
DN :=	200		U f1 :=	0.52			
	300			0.67			
	350			0.62			
	350			0.75			
	400			0.64			
	500			0.62			
$B_{ext} = \frac{1}{2}$	$\frac{D_0}{2e} - \frac{r}{e} - \left[\frac{D_0}{2e} - \frac{r}{2e}\right]$	$\left[\frac{r}{e}-1\right]\left[\frac{r}{r}\right]$	$\frac{\left(\frac{r}{e}\right)^2 - \left(\frac{D_0}{2e}\right)^2}{\left(\frac{D_0}{2e}\right)^2 - \left(\frac{D_0}{2e}\right)^2}$		(B.4.1-9)		
		√ (ē,	$\int -\frac{1}{2e} \left(\frac{1}{2e} - 1 \right)$				
	150			0.86		1.23	
DN :=	200		Bext :=	0.87	ext :=	1.60	
	300			0.87		2.37	
	350			0.87		2.62	
	350			0.83		2.50	
	400			0.87		3.00	
	500			0.87		3.75	
	150			0.42			
DN :=	200		Uf2 :=	0.36			
	300			0.46			
	350			0.44			
	350			0.42			
	400			0.45			
	500			0.43			

Reducer without knuckle due to Internal Pressure according to SS-EN 13480-3 (2012), Chapter 6.4								
Input								
Material	EN 10216-2	10CrMo9-10) W1.7380					
Design Temperature (Deg.C)	T _d							
Design Stress (MPa)	f							
Design Pressure (MPa)								
	р _с							
Weld efficiency factor for longitudinal weld (Z)	1.00							
Large Pipe Outer Diameter (mm)	D ₀₁							
Small Pipe Outer Diameter (mm)	D ₀₂							
Nominal Wall Thickness in Large Pipe (mm)	T ₁							
Nominal Wall Thickness in Small Pipe (mm)	T ₂							
Semi Angle of Reducer at Apex	α							
Weld effeciency factor for								
Longitudinal Weld	Z	1.00						
Corrosion Allowance (mm)	C ₀	1.00						
Negative Tolerance in Large Pipe	C _{l1}							
Negative Tolerance in Small Pipe	C _{s1}							
Negative Tolerance in Reducer	C ₁							
Thinning allowance due to manufacturing	C ₂							
Enter "Reducer Type" as E for "Eccent								

<u>nput</u>							
	200x150		E		221		132.8
	400x200		E		221		132.8
DN :=	400x350	Reducer Type :=	E	Td :=	221	f :=	132.8
	500x300		С		221		132.8
	500x300		E		221		132.8
	500x400		E		221		132.8
	200x150		219.1		6.3		6.3
	400x200		406.4		8.8		8.8
DN :=	400x350	D01 :=	406.4	T1 :=	8.8	enom :=	8.8
	500x300		508		11		11
	500x300		508		11		11
	500x400		508		11		11
	200x150		168.3		4.5		152
	400x200		219.1		6.3		356
DN :=	400x350	D02 :=	355.6	T2 :=	8	L :=	356
	500x300		323.9		7.1		508
	500x300		323.9		7.1		508
	500x400		406.4		8.8		508
	200x150		31.00		0.7875		0.5625
	400x200		46.00		1.1		0.7875
DN :=	400x350	$\alpha \coloneqq$	8.00	Cl1:=	1.1	Cs1 :=	1
	500x300		20.00		1.375		0.8875
	500x300		32.00		1.375		0.8875
	500x400		18.00		1.375		1.1
	200x150		0.7875		0		2.26
	400x200		1.1		0		2.26
DN :=	400x350	C1 :=	1.1	C2 :=	0	Pc :=	2.26
	500x300		1.375		0		2.26
	500x300		1.375		0		2.26
	500x400		1.375		0		2.26
	200x150		1.55		4.51		2.94
	400x200		4.12		6.70		4.51
DN :=	400x350	ej ≔	0.96	ea1 :=	6.70	ea2 :=	6.00
	500x300	- ,	2.53		8.63		5.21
	500x300		3.71		8.63		5.21
	500x400		2.33		8.63		6.70

Result							
Reducers	Concentric	and Eccentric					
6.4.6 Jur	nction betv	veen the large end	of a cone and	a cylinder with	out a knuckl	e	
				,		-	
6.4.6.2 E	Design						
$e_j = \frac{p_{cL}}{2}$	$\beta_{c\beta} = \frac{1}{3}$	$\frac{\overline{D_c}}{e_j} \frac{tan \propto}{1 + \frac{1}{\sqrt{1 + 1}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$					
		VCOS					
$e_{cyl} = \frac{1}{2}$	$\frac{p_c D_{01}}{fZ + p_c}$ $\frac{p_c D_e}{2fZ + p_c C}$						
	$p_c D_e$	1					
$e_{con} = \frac{1}{2}$	$2fZ + p_c C$	$OS(\alpha)$					
$e_1 = ma$	х(e _j ,e _{cyl})						
$e_3 = ma$	ıx(e _j , e _{con})						
6.4.8 Jur	nction betv	veen the small end	ofa cone and a	a cvlinder			
				,			
6.4.8.2 E	Design						
<i>e</i> ₃		\overline{s} $\overline{1+s}$	2	1 1+s ²			
$S = \frac{a_3}{e_{j2}}$	when s < 1;	$\tau = s \sqrt{\frac{s}{\cos \alpha}} + \sqrt{\frac{1+s}{2}}$	- when s >= 1; *	$\tau = 1 + \sqrt{S \frac{1}{2 \cos \alpha}}$	-		
$\beta_H = 0.4$	$4\sqrt{\frac{D_c}{e_{j2}}}\frac{tan \propto}{\tau}$	+0.5					
	$\sqrt{e_{j2}} \tau$						
n,	Daßır						
$e_{j2} = \frac{Pc}{c}$	$D_c \beta_H$ 2fZ						
	$\frac{p_c D_{02}}{fZ + p_c}$						
$e_{cyl} = \frac{1}{2}$	$fZ + p_c$						
	$ax(e_{j2},e_{cy})$						
Condition	s of Applic	ability					
	200x150		Valid		1.68		
	400x200		Valid		4.48		
DN :=	400x350	Equ. 6.4.1-1 :=	Valid	$e_j \coloneqq$	1.04		
	500x300		Valid		2.75		
	500x300		Valid		4.04		
	500x400		Valid		2.53		
	0.933672		1.69		1.85		2.16
	1.328222		4.49		3.43		4.94
$\beta \coloneqq$	0.306872	$e_j \coloneqq$	1.04	ecyl :=	3.43	econ :=	3.46
	0.652824		2.76		4.29		4.56
	0.957547		4.05		4.29		5.05
	0.59948		2.54		4.29		4.51

	200x150		1.85		2.16		0.42
	400x200		4.49		4.94		0.67
DN :=	400x350		3.43		3.46	Uf1:= e1/ea1	0.51
	500x300	e1:=	4.29	e3:=	4.56		0.50
	500x300		4.29		5.05		0.50
	500x400		4.29		4.51		0.5
ducer a	t the Junction to	o the Small Pipe	:				
	200x150		2.16		2.10		1.03
	400x200		4.94		2.93		1.68
DN :=	400x350		3.46		2.27		1.53
	500x300	e3:=	4.56	ej2 :=	2.86	s:=	1.59
	500x300		5.05	_	3.84		1.32
	500x400		4.51		3.71		1.21
	200.450		2.44		4 54		
	200x150 400x200		2.11 3.16		1.51		
			2.60		1.62 0.77		
DN .=	400x350		2.60	Bh :=			
	500x300	z :=	2.73	ы.=	1.06		
	500x300				1.42		
	500x400		2.26		1.10		
	200x150		2.10		1.42		
	400x200		2.93		1.85		
DN :=	400x350		2.27		3.00		
	500x300	ej2 :=	2.86	ecyl :=	2.73		
	500x300		3.84		2.73		
	500x400		3.71		3.43		
	200x150		2.10				0.7
	400x200		2.93				0.65
DN :=	400x350		3.00				0.50
	500x300	e2:=	2.86			Uf2:= e2/ea2	0.5
	500x300		3.84				0.74
	500x400		3.71				0.55

Internal Pressure Design Results from CAEPIPE

Tensile strength - 223 (NUmm2) Clip (E Clip (C Clip (C <th></th> <th>iol. Joi</th> <th>int factor =</th> <th>Ð</th> <th>= CS</th> <th>aterial 1: E</th> <th>Pipe material 1: EN 10216-2 10CrMo9-10 Seamless CS</th>		iol. Joi	int factor =	Ð	= CS	aterial 1: E	Pipe material 1: EN 10216-2 10CrMo9-10 Seamless CS
ens Ins.Thk Lin.Dens Lin.Thk solution (kg/m3) (mm) (kg/m3) (mm) (100 2700 1 1 120 2700 1 1 140 2700 1 1 1 140 2700 1 1 140 2700 1 1 140 2700 1 1 140 2700 1 1 140 2700 1 1 140 2700 1 1 140 2700 1 1 140 2700 1 1 1 140 2700 1 1 1 140 2700 1 1 1 140 2700 1 1 1 140 2700 1 1 1 140 2700 1 1 1 140 2700 1 1 1 140 2700 1 1 1 140 2700 1 1 1 140 2700 1 1 1 140 2700 1 1 1 140 2700 1 1 1 140 2700 1 1 1 140 2700 1 1 1 140 2700 1 1 1 140 2700 1 1 1 1 140 2700 1 1 140 2700	m2) ff	, , , , , , , , , , , , , , , , , , , ,	fCR	D			
M.Tol Ins.Dens Ins.Thk Lin.Dens Lin.Thk (%) (%) (kg/m3) (mm) (kg/m3) (mm) (12.5 150 1100 2700 1 1 12.5 150 1200 2700 1 1 12.5 150 140 2700 1 1 12.5 150 140 2700 1 1 12.5 150 140 2700 1 1 12.5 150 140 2700 1 1 12.5 150 140 2700 1 1 12.5 150 140 2700 1 1 12.5 150 140 2700 1 1 12.5 150 140 2700 1 1 12.5 150 140 2700 1 1 12.5 150 140 2700 1 1 1 12.5 150 140 2700 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 ()	V/mm2)	(N/mm2)				
M.Tol Ins.Dens Ins.Thk Lin.Dens Lin.Thk (%) (kg/m3) (mm) (kg/m3) (mm) 12.5 150 100 2700 1 12.5 150 120 1 1 12.5 150 100 2700 1 12.5 150 140 2700 1 12.5 150 140 2700 1 12.5 150 140 2700 1 12.5 150 140 2700 1 12.5 150 140 2700 1 12.5 200 1 1 1 12.6 150 140 2700 1 12.5 200 1 1 1 12.5 200 1 1 1 12.6 140 2700 1 1 12.5 200 1 1 1 12.6 140 2700 1 1 12.5 200 1 1 1	200	37.1					
M.Tol Ins. Dens Ins. Thk Lin. Dens Lin. Thk (%) (kg/m3) (mm) (kg/m3) (mm) 12.5 12.6 100 2700 1 12.5 150 100 2700 1 12.5 150 140 2700 1 12.5 150 140 2700 1 12.5 150 140 2700 1 12.5 150 140 2700 1 12.5 200 140 2700 1 12.5 200 140 2700 1 12.5 200 140 2700 1 12.5 200 140 2700 1 12.5 200 140 2700 1 12.6 140 2700 1 12.5 200 1 2700 1 12.5 200 1 2700 1 12.6 140 2700 1 1	2	30.9					
M.Tol Ins.Dens In.Thk (%) (kg/m3) (mm) (%) (kg/m3) (mm) 12.5 150 100 2700 12.5 150 100 2700 12.5 150 140 2700 12.5 150 140 2700 12.5 150 140 2700 12.5 150 140 2700 12.5 150 140 2700 12.5 150 140 2700 12.5 150 140 2700 12.5 150 140 2700 12.5 150 140 2700 12.5 200 1 1		36.5					
M.Tol Ins.Dens Ins.Thk Lin.Dens Lin.Thk (%) (kg/m3) (mm) (kg/m3) (mm) (%) (kg/m3) (mm) (kg/m3) (mm) 12.5 150 100 2700 1 12.5 150 120 2700 1 12.5 150 140 2700 1 12.5 150 140 2700 1 12.5 150 140 2700 1 12.5 200 140 2700 1 12.5 200 140 2700 1 12.5 200 140 2700 1 12.5 200 140 2700 1 12.5 200 140 2700 1	13	32.8					
M.Tol Ins.Dens Ins.Thk Lin.Dens Lin.Thk (%) (kg/m3) (mm) (kg/m3) (mm) 12.5 150 100 2700 1 12.5 150 100 2700 1 12.5 150 140 2700 1 12.5 150 140 2700 1 12.5 150 140 2700 1 12.5 150 140 2700 1 12.5 200 140 2700 1 12.5 200 140 2700 1 12.5 200 140 2700 1 12.5 200 140 2700 1 12.5 200 140 2700 1	-	32.8					
M.Tol Ins.Dens Ins.Thk Lin.Dens Lin.Thk (%) (%) (kg/m3) (mm) (kg/m3) (mm) (mm) 12.5 150 100 2700 1 1 12.5 150 100 2700 1 1 12.5 150 140 2700 1 1 12.5 150 140 2700 1 1 12.5 150 140 2700 1 1 12.5 150 140 2700 1	13	32.8					
M.Tol Ins.Dens Ins.Thk Lin.Dens Ins.Thk St (%) (kg/m3) (mm) (kg/m3) (mm) St St </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Pipe Sections (8)</td>							Pipe Sections (8)
12.5 12.6 12.6 12.6 100 2700 1 12.5 150 100 2700 1 1 12.5 150 120 2700 1 12.5 150 140 2700 1 12.5 150 140 2700 1 12.5 150 140 2700 1 12.5 200 140 2700 1 12.5 200 140 2700 1 12.5 200 140 2700 1 12.5 200 140 2700 1	ц т ц	or.Al M. mr (%	(kg/m	ens Ins.Thk 13) (mm)	Lin.Dens (kg/m3)	Lin.Thk (mm)	Soil
1 12.5 150 100 2700 1 1 12.5 150 100 2700 1 1 12.5 150 140 2700 1 1 12.5 150 140 2700 1 1 12.5 150 140 2700 1 1 12.5 150 140 2700 1 1 12.5 150 140 2700 1 1 12.5 200 140 2700 1 1 12.5 200 140 2700 1 1 12.5 200 140 2700 1 1 12.5 200 140 2700 1 1 12.5 200 140 2700 1	1	12					
1 12.5 150 100 2700 1 1 12.5 150 120 2700 1 1 12.5 150 140 2700 1 1 12.5 150 140 2700 1 1 12.5 150 140 2700 1 1 12.5 150 140 2700 1 1 12.5 150 140 2700 1 1 12.5 200 140 2700 1 1 12.5 200 140 2700 1 1 12.5 200 140 2700 1 1 12.5 200 140 2700 1 1 12.5 200 140 2700 1 1 0.003 0.003 1 1 1		12	2.5				
1 12.5 150 120 2700 1 1 12.5 150 140 2700 1 1 12.5 150 140 2700 1 1 12.5 150 140 2700 1 1 12.5 150 140 2700 1 1 12.5 200 140 2700 1 1 12.5 200 140 2700 1 1 12.5 200 140 2700 1 1 12.5 200 140 2700 1 1 12.5 200 140 2700 1 1 12.5 200 140 2700 1 1 12.5 200 140 2700 1 1 12.5 200 140 2700 1		12		100	2700	1	
1 12.5 150 140 2700 1 1 12.5 150 140 2700 1 1 12.5 150 140 2700 1 1 12.5 200 140 2700 1 rs 12.5 200 140 2700 1 rs gravity (kg/m) Load 1 0 0.003 0.003 1 1		12		120	2700	-	
1 12.5 150 140 2700 1 1 12.5 150 140 2700 1 1 12.5 200 140 2700 1 r) gravity (kg/m) Load 1 1		12		140	2700	-	
1 12.5 150 140 2700 1 1 12.5 200 140 2700 1 r) gravity (kg/m) Load 1 1	-	12		140	2700	-	
1 12.5 200 140 2700 1 Specific Add.Wgt. Wind gravity (kg/m) Load 0.003 0.003		12		140	2700		
Specific Add.Wgt. Wind gravity (kg/m) Load 0.003		12		140	2700	1	
Specific Add.Wgt. gravity (kg/m) 0.003							Pipe Loads (1)
0.003		avitv (1	Add.Wgt. / 'ka/m) L	Nind -oad			
	00 00.						
						Verific	Verification_Internal_Pressure Apr 7,2015

	ement Ma				•						101			
	0	ax.Temp	Element Max.Temp Max.Press All.Stress	All.Stress	OD1 OD2	Cor.A	II Radius	Cor.All Radius Cone Angle ea1	-			ep2	Uf1	Uf2
	pe (U)		(Dar)	(ZMM/N)	(mm) (mm) (mm) 366.6.366.6.4	(mm) (r	(mm)	(deg)	(mm)	(mm)	(mm)	(mm)	(ep1/ea1)	(ep1/ea1) (ep2/ea2)
			22.6		0 0		356		0 9		4.4824	2.4943	0.75	0.42
			22.6		9	6 1			9		3.0003	3.0003	0.50	0.50
	Elbow 221		22.6	132.8	355.6 355.6	.6 1	533		9	9	3.7316	3.7316	0.62	0.62
	Bend 221	-	22.6	132.8	355.6 355.6	.6 1	533		9	9	3.7468	2.6225	0.62	0.44
t	Pipe 221	-	22.6	132.8	355.6 355.6	.6 1			9	9	3.0003	3.0003	0.50	0.50
60 Pip	Pipe 221	-	22.6	132.8	355.6 355.6	.6 1			9	9	3.0003	3.0003	0.50	0.50
70 EII	Elbow 221	د	22.6	132.8	355.6 355.6	.6 1	533		9	9	3.7316	3.7316	0.62	0.62
Be	Bend 221		22.6	132.8	355.6 355.6	.6 1	533		9	9	3.7468	2.6225	0.62	0.44
80 EII	Elbow 221			132.8	355.6 355.6	.6 1	533		9	9	3.7316	3.7316	0.62	0.62
Be	Bend 221	-	22.6	132.8	355.6 355.6	.6 1	533		9	9	3.7468	2.6225	0.62	0.44
90 Pip	Pipe 221	-			355.6 355.6	.6 1			9	9	3.0003	3.0003	0.50	0.50
100 Pip	Pipe 221		22.6	132.8	355.6 355.6	.6 1			9	9	3.0003	3.0003	0.50	0.50
100 110 Pipe				132.8	355.6 355.6	.6 1			9	9	3.0003	3.0003	0.50	0.50
120 130 Pipe	pe 221			132.8	355.6 355.6	.6 1			9	9	3.0003	3.0003	0.50	0.50
140 150 Pi _j	Pipe 221		22.6	132.8	355.6 355.6	.6 1			9	9	3.0003	3.0003	0.50	0.50
150 160 Re	Reducer 221		22.6	132.8	406.4 355.6	.6 1		8	6.7	9	3.4289	3.0003	0.51	0.50
160 170 Pi _j	Pipe 221		22.6	132.8	406.4 406.4 1	4 1			6.7	6.7	3.4289	3.4289	0.51	0.51
170 180 Pipe	pe 221		22.6	132.8	406.4 406.4 1	4 1			6.7	6.7	3.4289	3.4289	0.51	0.51
180 190 Re	Reducer 221			132.8	406.4 219.1 1	1		46	6.7	4.5125 4.4882		2.9294	0.67	0.65
190 200 Pip	Pipe 221		22.6	132.8	219.1 219.1 1	11			4.5125	4.5125 4.5125 1.8486		1.8486	0.41	0.41
200 210 Elt	Elbow 221			132.8	219.1 219.1	1 1	305		4.5125	4.5125 4.5125 2.3525		2.3525	0.52	0.52
Be	Bend 221		22.6	132.8	219.1 219.1 1	11	305		4.5125	4.5125 4.5125 2.3634		1.6025	0.52	0.36
210 220 Elt	Elbow 221		22.6	132.8	219.1 219.1	11	305		4.5125	4.5125 4.5125 2.3525	2.3525	2.3525	0.52	0.52
Be	Bend 221		22.6	132.8	219.1 219.1	11	305		4.5125	4.5125 4.5125 2.3634	2.3634	1.6025	0.52	0.36
220 230 Pir	Pipe 221		22.6	132.8	219.1 219.1	۲			4.5125	4.5125 4.5125 1.8486		1.8486	0.41	0.41
230 240 Elt	Elbow 221	1	22.6	132.8	219.1 219.1	11	305		4.5125	4.5125	2.3525	2.3525	0.52	0.52
Be	Bend 221	-	22.6	132.8	219.1 219.1	11	305		4.5125	4.5125 4.5125 2.3634	2.3634	1.6025	0.52	0.36
240 250 Ell	Elbow 221		22.6	132.8	219.1 219.1	11	305		4.5125	4.5125	2.3525	2.3525	0.52	0.52
Be	Bend 221	-	22.6	132.8	219.1 219.1	۲.	305		4.5125	4.5125 2.3634	2.3634	1.6025	0.52	0.36

Caepipe	ipe							Pre	Pressure Design (Internal)	(Internal)						Page 2
							Interna	I Pressur	Internal Pressure Design: EN 13480-3 (2012) (179)	13480-3 (2	2012) (17	(6,				
From	To	Element	Max.Temp	Element Max.Temp Max.Press All.Stress OD	All.Stress		OD2 Cor	r.All Rad	S	1				Uf1 (cc1(cc1)	Uf2	
250	260	Pine	(U) 221	(Dar) 22 6	(IN/ITITIZ) 132.8	719 1 2 ⁻	1 219 1 1	(mm) (m	(laed)	(mm) 4 5125	(mm) (mm) (mm) 4 5125 4 5125 1 8486		(mm) 1 8486	(ep1/ea1)	(ep 1/ea 1) (ep 2/ea 2) 0 41 0 41	
260	270	Pipe	221	22.6			219.1 1			4.5125	4.5125 4.5125 1.8486			0.41	0.41	
280	290	Pipe	221	22.6		-	219.1 1			4.5125	4.5125 4.5125 1.8486	1.8486	1.8486	0.41	0.41	
300	310	Pipe	221	22.6	132.8	219.1 2	219.1 1			4.5125	4.5125 4.5125 1.8486	1.8486	1.8486	0.41	0.41	
310	320	Elbow	221	22.6	132.8	219.1 2	219.1 1	305		4.5125	4.5125 4.5125	2.3525	2.3525	0.52	0.52	
		Bend	221	22.6	132.8	219.1 2	219.1 1	305		4.5125	4.5125	2.3634	1.6025	0.52	0.36	
320	330	Elbow	221	22.6	132.8	219.1 219.1	19.1 1	305		4.5125	4.5125	2.3525	2.3525	0.52	0.52	
		Bend	221	22.6	132.8	219.1 2	219.1 1	305		4.5125	4.5125 4.5125	2.3634	1.6025	0.52	0.36	
330	340	Elbow	221	22.6	132.8	219.1 219.1	19.1 1	305		4.5125	4.5125 4.5125	2.3525	2.3525	0.52	0.52	
		Bend	221	22.6	132.8	219.1 219.1	19.1 1	305		4.5125	4.5125 4.5125 2.3634	2.3634	1.6025	0.52	0.36	
340	350	Pipe	221	22.6	132.8	219.1 219.1	19.1 1			4.5125	4.5125 4.5125 1.8486		1.8486	0.41	0.41	
350	360	Pipe	221	22.6	132.8	219.1 219.1	19.1 1			4.5125	4.5125 4.5125 1.8486		1.8486	0.41	0.41	
360	370	Pipe	221	22.6		219.1 2	1 219.1 1			4.5125	4.5125 4.5125 1.8486	1.8486	1.8486	0.41	0.41	
370	380	Reducer		22.6	132.8	219.1 16	1 168.3 1		31	4.5125	4.5125 2.9375 1.8486		2.0994	0.41	0.71	
380	390	Pipe	221	22.6	132.8	168.3 10	3 168.3 1			2.9375	2.9375 2.9375 1.42		1.42	0.48	0.48	
390	400	Elbow	221	22.6	132.8	168.3 10	3 168.3 1	229		2.9375	2.9375 2.9375 1.821		1.821	0.62	0.62	
		Bend	221	22.6	132.8	168.3 10	3 168.3 1	229		2.9375	2.9375 2.9375 1.8298		1.2277	0.62	0.42	
400	410	Elbow	221	22.6	132.8	168.3 10	3 168.3 1	229		2.9375	2.9375 2.9375 1.821		1.821	0.62	0.62	
		Bend	221	22.6	132.8	168.3 10	3 168.3 1	229		2.9375	2.9375 2.9375 1.8298		1.2277	0.62	0.42	
410	420	Elbow	221	22.6	132.8	168.3 10	3 168.3 1	229		2.9375	2.9375 2.9375 1.821		1.821	0.62	0.62	
		Bend	221	22.6	132.8	168.3 16	3 168.3 1	229		2.9375	2.9375 2.9375 1.8298	1.8298	1.2277	0.62	0.42	
420	430	Pipe	221	22.6	132.8	168.3 10	3 168.3 1			2.9375	2.9375 2.9375 1.42		1.42	0.48	0.48	
360	500	Elbow	221	22.6	132.8	168.3 16	3 168.3 1	229		2.9375	2.9375 2.9375 1.821		1.821	0.62	0.62	
		Bend	221	22.6	132.8	168.3 10	3 168.3 1	229		2.9375	2.9375 1.8298		1.2277	0.62	0.42	
500	510	Elbow	221	22.6	132.8	168.3 10	3 168.3 1	229		2.9375	2.9375 1.821		1.821	0.62	0.62	
		Bend	221	22.6	132.8	168.3 10	3 168.3 1	229		2.9375	2.9375	1.8298	1.2277	0.62	0.42	
510	520	Pipe	221	22.6	132.8	168.3 16	3 168.3 1			2.9375	2.9375	1.42	1.42	0.48	0.48	
1000	1010) Elbow	221	22.6	132.8	355.6 3!	6 355.6 1	356		9	9	4.4417	4.4417	0.74	0.74	
		Bend	221	22.6	132.8	355.6 3!	6 355.6 1	356	<u>-</u>	9	9	4.4824	2.4943	0.75	0.42	
1010	1020) Pipe	221	22.6	132.8	355.6 3	6 355.6 1			9	9	3.0003	3.0003	0.50	0.50	
Versi	Version 7.30	0						Verifi	Verification_Internal_Pressure	- Pressure	a)					May 7,2015

Caepipe	be							Press	Pressure Design (Internal)	nternal)					
							Internal F	ressure	Internal Pressure Design: EN 13480-3 (2012) (179)	3480-3 (2	2012) (17	(6,			
From	To	ement Ma.	x.Temp	Element Max.Temp Max.Press All.Stress OD	All.Stress	0D1 0D2	2 Cor.A	II Radius	Cor.All Radius Cone Angle ea1	e ea1	ea2	ep1	ep2	Uf1	Uf2
		Type (C)		(bar)	(N/mm2)	(mm) (mm) (mm)	(mm) (m	(mm)	(deg)	(mm)	(mm)	(mm)	(mm)	(ep1/ea1)	(ep1/ea1) (ep2/ea2)
1020	1030 Elb	Elbow 221		22.6	132.8	355.6 355.6	6 1	533		9	9	3.7316	3.7316	0.62	0.62
	Be	Bend 221		22.6	132.8	355.6 355.6	6 1	533		9	9	3.7468	2.6225	0.62	0.44
1030	1040 Pipe	be 221		22.6	132.8	355.6 355.6	6 1			9	9	3.0003	3.0003	0.50	0.50
1040	1050 Pipe	be 221		22.6	132.8	355.6 355.6	6 1			9	9	3.0003	3.0003	0.50	0.50
1050	1060 Elbow	00W 221		22.6	132.8	355.6 355.6	6 1	533		9	9	3.7316	3.7316	0.62	0.62
	Be	Bend 221		22.6	132.8	355.6 355.6	6 1	533		9	9	3.7468	2.6225	0.62	0.44
1060	1070 Elb	Elbow 221		22.6	132.8	355.6 355.6	6 1	533		9	9	3.7316	3.7316	0.62	0.62
	Be	Bend 221		22.6	132.8	355.6 355.6	6 1	533		9	9	3.7468	2.6225	0.62	0.44
1070	1080 Pipe	be 221	_	22.6	132.8	355.6 355.6	6 1			9	9	3.0003	3.0003	0.50	0.50
1080	1090 Pipe			22.6	132.8	355.6 355.6	6 1			9	9	3.0003	3.0003	0.50	0.50
1090	1100 Pipe			22.6	132.8	355.6 355.6	6 1			9	9	3.0003	3.0003	0.50	0.50
1110	1120 Pipe			22.6	132.8	355.6 355.6	6 1			9	9	3.0003	3.0003	0.50	0.50
1130	1140 Pipe			22.6	132.8	355.6 355.6	6 1			9	9	3.0003	3.0003	0.50	0.50
1140	1150 Reducer	ducer 221		22.6	132.8	406.4 355.6	6 1		8	6.7	9	3.4289	3.0003	0.51	0.50
1150	1160 Pipe	be 221		22.6	132.8	406.4 406.4	6.4 1			6.7	6.7	3.4289	3.4289	0.51	0.51
1160				22.6	132.8	406.4 406.4	6.4 1			6.7	6.7	3.4289	3.4289	0.51	0.51
1170	1170 1180 Reducer	ducer 221		22.6	132.8	406.4 219.1	9.1 1		46	6.7	4.5125 4.4882	4.4882	2.9294	0.67	0.65
1180	1180 1190 Pipe	be 221		22.6	132.8	219.1 219.1	9.1 1		-	4.5125	4.5125 4.5125 1.8486	1.8486	1.8486	0.41	0.41
1190	1200 Elbow	ow 221		22.6	132.8	219.1 219.1	9.1 1	305		4.5125	4.5125 4.5125 2.3525	2.3525	2.3525	0.52	0.52
	Be	Bend 221		22.6	132.8	219.1 219.1 1	9.1 1	305		4.5125	4.5125 4.5125 2.3634	2.3634	1.6025	0.52	0.36
1200	1210 Elbow	ow 221		22.6	132.8	219.1 219.1	9.1 1	305		4.5125	4.5125 4.5125 2.3525	2.3525	2.3525	0.52	0.52
	Be	Bend 221		22.6	132.8	219.1 219.1	9.1 1	305		4.5125	4.5125 4.5125 2.3634	2.3634	1.6025	0.52	0.36
1210	1220 Pipe	be 221		22.6	132.8	219.1 219.1	9.1 1			4.5125	4.5125 4.5125 1.8486	1.8486	1.8486	0.41	0.41
1220	1230 Elbow	ow 221		22.6	132.8	219.1 219.1	9.1 1	305		4.5125	4.5125 4.5125 2.3525	2.3525	2.3525	0.52	0.52
	Be	Bend 221	_	22.6	132.8	219.1 219.1	9.1 1	305		4.5125	4.5125 4.5125 2.3634	2.3634	1.6025	0.52	0.36
1230	1240 Elbow	ow 221		22.6	132.8	219.1 219.1	9.1 1	305		4.5125	4.5125 4.5125 2.3525	2.3525	2.3525	0.52	0.52
	Be	Bend 221		22.6	132.8	219.1 219.1	9.1 1	305		4.5125	4.5125 4.5125 2.3634	2.3634	1.6025	0.52	0.36
1240	1250 Pipe	be 221		22.6	132.8	219.1 219.1	9.1 1			4.5125	4.5125 4.5125 1.8486	1.8486	1.8486	0.41	0.41
1250	1260 Pipe	be 221		22.6	132.8	219.1 219.1	9.1 1			4.5125	4.5125 4.5125 1.8486	1.8486	1.8486	0.41	0.41
1270	1280 Pipe	be 221		22.6	132.8	219.1 219.1	.1 1			4.5125	4.5125 1.8486	1.8486	1.8486	0.41	0.41
Versio	Version 7.30							Verifica	Verification_Internal_Pressure	Pressure					

Caepipe	be								Pressur	Pressure Design (Internal)	ternal)						Page 4
							Inter	nal Pres	ssure De	Internal Pressure Design: EN 13480-3 (2012) (179)	3480-3 (2	2012) (1)	(62				
From	To	Element Tvpe	Max.Temp (C)	Element Max.Temp Max.Press All.Stress OD Tvpe (C) (bar) (N/mm2) (mr	All.Stress (N/mm2)		I OD2 Cor.Al (mm) (mm)	or.All F nm) (i	(mm)	Cor.All Radius Cone Angle ea1	6	ea2 (mm)	ep1 (mm)	ep2 (mm)	Uf1 (en1/ea1)	Uf1 Uf2 (en1/ea1) (en2/ea2)	
1290	1300 Pipe	Pipe	221	22.6		219.1	.1 219.1 1			10	4.5125	10	1.8486	1.8486	0.41	0.41	
1300		1310 Elbow	221	22.6		219.1	.1 219.1 1	(7)	305		4.5125	4.5125 4.5125 2.3525	2.3525	2.3525	0.52	0.52	
		Bend	221	22.6	132.8	219.1	.1 219.1 1	m	305		4.5125	4.5125 4.5125 2.3634	2.3634	1.6025	0.52	0.36	
1310	1320	Elbow	221	22.6	132.8	219.1	219.1 1	en	305		4.5125	4.5125 4.5125	2.3525	2.3525	0.52	0.52	
		Bend	221	22.6	132.8	219.1	219.1 1	en	305		4.5125	4.5125 4.5125	2.3634	1.6025	0.52	0.36	
1320	1330	Elbow	221	22.6	132.8	219.1	219.1 1	en	305		4.5125	4.5125 4.5125	2.3525	2.3525	0.52	0.52	
		Bend	221	22.6	132.8	219.1	219.1 1	e	305		4.5125	4.5125	2.3634	1.6025	0.52	0.36	
1330	1340	Pipe	221	22.6	132.8	219.1	.1 219.1 1				4.5125	4.5125	1.8486	1.8486	0.41	0.41	
1340	1350 Pipe	Pipe	221	22.6	132.8	219.1	.1 219.1 1				4.5125	4.5125 4.5125	1.8486	1.8486	0.41	0.41	
1350	1360 Pipe	Pipe	221	22.6	132.8	219.1	.1 219.1 1				4.5125	4.5125 4.5125	1.8486	1.8486	0.41	0.41	
1360	1370	1370 Reducer	221	22.6	132.8	219.1	.1 168.3 1			31	4.5125	2.9375	1.8486	2.0994	0.41	0.71	
1370	1380 Pipe	Pipe	221	22.6	132.8	168.3	.3 168.3 1				2.9375	2.9375 1.42	1.42	1.42	0.48	0.48	
1380	1390	1390 Elbow	221	22.6	132.8	168.3	.3 168.3 1	N	229		2.9375	2.9375 1.821	1.821	1.821	0.62	0.62	
		Bend	221	22.6	132.8	168.3	.3 168.3 1	CN .	229		2.9375	2.9375 2.9375 1.8298	1.8298	1.2277	0.62	0.42	
1390	1400	1400 Elbow	221	22.6	132.8	168.3	3 168.3 1	(N	229		2.9375	2.9375 2.9375 1.821	1.821	1.821	0.62	0.62	
		Bend	221	22.6	132.8	168.3	3 168.3 1	CV.	229		2.9375	2.9375 2.9375 1.8298	1.8298	1.2277	0.62	0.42	
1400	1410	1410 Elbow	221	22.6	132.8	168.3	3 168.3 1	N	229		2.9375	2.9375 2.9375 1.821	1.821	1.821	0.62	0.62	
		Bend	221	22.6	132.8	168.3	3 168.3 1		229		2.9375	2.9375 2.9375 1.8298	1.8298	1.2277	0.62	0.42	
1410	1420 Pipe	Pipe	221	22.6	132.8	168.3	3 168.3 1				2.9375	2.9375 2.9375 1.42	1.42	1.42	0.48	0.48	
1350		1500 Elbow	221	22.6	132.8	168.3	3 168.3 1		229		2.9375	2.9375 2.9375 1.821	1.821	1.821	0.62	0.62	
		Bend	221	22.6	132.8	168.3	3 168.3 1	(N	229		2.9375	2.9375 2.9375 1.8298	1.8298	1.2277	0.62	0.42	
1500	1510	1510 Elbow	221	22.6	132.8	168.3	3 168.3 1		229		2.9375	2.9375 2.9375 1.821	1.821	1.821	0.62	0.62	
		Bend	221	22.6	132.8	168.3	3 168.3 1	(N	229		2.9375	2.9375 2.9375 1.8298	1.8298	1.2277	0.62	0.42	
1510	1520 Pipe	Pipe	221	22.6	132.8	168.3	3 168.3 1				2.9375	2.9375 2.9375	1.42	1.42	0.48	0.48	
170	1600 Pipe	Pipe	221	22.6	132.8	406.4 4	4 406.4 1				6.7	6.7	3.4289	3.4289	0.51	0.51	
1600	1610	1610 Elbow	221	22.6	132.8	406.4 4	4 406.4 1	9	610		6.7	6.7	4.2629	4.2629	0.64	0.64	
		Bend	221	22.6	132.8	406.4 406.4	406.4 1	0	610		6.7	6.7	4.2803	2.9976	0.64	0.45	
1610	1620	Pipe	221	22.6	132.8	406.4 4	4 406.4 1				6.7	6.7	3.4289	3.4289	0.51	0.51	
1160	1850	Pipe	221	22.6	132.8	406.4	4 406.4 1				6.7	6.7	3.4289	3.4289	0.51	0.51	
1620		1800 Reducer	221	22.6	132.8	508 4	406.4 1		•	18	8.625	6.7	4.2861	3.7079	0.50	0.55	
Versic	Version 7.30							š	erificatio	Verification_Internal_Pressure	Pressure						May 7,2015

Caepipe)e								Press	Pressure Design (Internal)	ternal)						Page 5
							Int	ernal Pi	ressure	Internal Pressure Design: EN 13480-3 (2012) (179)	480-3 (2	2012) (1	(62				
From	To Ele	ment M	ax.Temp	Element Max.Temp Max.Press All.Stress OD	All.Stress	OD1		Cor.Al	I Radius	Cor.All Radius Cone Angle ea1			ep1	ep2	Uf1	Uf2	
	Type	0	()	(bar)	12)	(mm)		(mm) (mm)	(mm)	(deg)	(mm)	(mm)	(mm)	(mm)	(ep1/ea1)	(ep1/ea1) (ep2/ea2)	
1800	1810 Pipe	e 221	21	22.6	132.8	508	508	۲			8.625	8.625	4.2861	4.2861	0.50	0.50	
1810	1820 Pipe	e 221	21	22.6	132.8	508	508	-			8.625	8.625	4.2861	4.2861	0.50	0.50	
1820	1830 Pipe	e 221	21	22.6	132.8	508	508	-			8.625	8.625	4.2861	4.2861	0.50	0.50	
1830	1840 Pipe	e 221	21	22.6	132.8	508	508	٢			8.625	8.625	4.2861	4.2861	0.50	0.50	
1840	1850 Pipe	e 221	21	22.6	132.8	508	508	-			8.625	8.625	4.2861	4.2861	0.50	0.50	
1850	1860 Pipe	e 221	21	22.6	132.8	508	508	-			8.625	8.625	4.2861	4.2861	0.50	0.50	
1860	1870 Elbow	ow 221	21	22.6	132.8	508	508	-	762		8.625	8.625	5.3297	5.3297	0.62	0.62	
	Bend	nd 221	21	22.6	132.8	508	508	÷	762		8.625	8.625	5.3514	3.7467	0.62	0.43	
1870	1880 Pipe	e 221	21	22.6	132.8	508	508	-			8.625	8.625	4.2861	4.2861	0.50	0.50	
1880	1890 Elbow		21	22.6	132.8	508	508	-	762		8.625	8.625	5.3297	5.3297	0.62	0.62	
	Bend	nd 221	21	22.6	132.8	508	508	-	762		8.625	8.625	5.3514	3.7467	0.62	0.43	
1890	1900 Elbow	ow 221	21	22.6	132.8	508	508	-	762		8.625	8.625	5.3297	5.3297	0.62	0.62	
	Bend	nd 221	21	22.6	132.8	508	508	-	762		8.625	8.625	5.3514	3.7467	0.62	0.43	
1900	1910 Elbow		21	22.6	132.8	508	508	-	762		8.625	8.625	5.3297	5.3297	0.62	0.62	
	Bend	nd 221	21	22.6	132.8	508	508	-	762		8.625	8.625	5.3514	3.7467	0.62	0.43	
1910	1920 Elbow	ow 221	21	22.6	132.8	508	508	-	762		8.625	8.625	5.3297	5.3297	0.62	0.62	
	Bend	nd 221	21	22.6	132.8	508	508	-	762		8.625	8.625	5.3514	3.7467	0.62	0.43	
1920	1930 Pipe	e 221	21	22.6	132.8	508	508	-			8.625	8.625	4.2861	4.2861	0.50	0.50	
1930	1930 1940 Pipe	e 221	21	22.6	132.8	508	508	-			8.625	8.625	4.2861	4.2861	0.50	0.50	
1950	1950 1960 Pipe	e 221	21	22.6	132.8	508	508	÷			8.625	8.625	4.2861	4.2861	0.50	0.50	
1960	1970 Elbow	ow 221	21	22.6	132.8	508	508	-	762		8.625	8.625	5.3297	5.3297	0.62	0.62	
	Bend	nd 221	21	22.6	132.8	508	508	-	762		8.625	8.625	5.3514	3.7467	0.62	0.43	
1970	1980 Pipe	e 221	21	22.6	132.8	508	508	~			8.625	8.625	4.2861	4.2861	0.50	0.50	
1980	1985 Pipe	e 221	21	22.6	132.8	508	508	-			8.625	8.625	4.2861	4.2861	0.50	0.50	
1985	1990 Pipe	e 221	21	22.6	132.8	508	508	-			8.625	8.625	4.2861	4.2861	0.50	0.50	
1990	2000 Pipe		221	22.6	132.8	508	508	-			8.625	8.625	4.2861	4.2861	0.50	0.50	
2000	2010 Pipe	e 221	21	22.6	132.8	508	508	-			8.625	8.625	4.2861	4.2861	0.50	0.50	
2010	2020 Pipe		221	22.6	132.8	508	508	-			8.625	8.625	4.2861	4.2861	0.50	0.50	
2020	2030 Reducer	ducer 221	21	22.6	132.8	508	406.4	-		18	8.625	6.7	4.2861	3.7079	0.50	0.55	
2030	2040 Pipe		221	22.6	132.8	406.4	4 406.4	-			6.7	6.7	3.4289	3.4289	0.51	0.51	
Version 7.30	n 7.30								Verifica	Verification_Internal_Pressure	ressure	0					May 7,2015

To 2045 2050 2055 2050 2050 2070 2070	Element Type Pipe	May Tomn									121			
2045 2050 2055 2060 2060 2060 2080	l ype Pipe	INIAA. I CITIP	Element Max.Temp Max.Press All.Stress	All.Stress	OD1 OI	OD2 Cor.All	.All Radiu:	Radius Cone Angle	ea1	ea2	ep1	ep2	Uf1	Uf2
	Pipe	(C)	(bar)	(N/mm2)	(mm) (m	(mm) (mm)		(deg)	(mm)	(mm)	(mm)	(mm)	(ep1/ea1)	(ep1/ea1) (ep2/ea2)
		221	22.6	132.8	406.4 406.4	06.4 1			6.7	6.7	3.4289	3.4289	0.51	0.51
	Pipe	221	22.6	132.8	406.4 406.4	16.4			6.7	6.7	3.4289	3.4289	0.51	0.51
	Pipe	221	22.6	132.8	406.4 406.4	06.4 1			6.7	6.7	3.4289	3.4289	0.51	0.51
		221	22.6	132.8	406.4 406.4	06.4 1	610		6.7	6.7	4.2629	4.2629	0.64	0.64
	Bend	221	22.6	132.8	406.4 406.4	06.4 1	610		6.7	6.7	4.2803	2.9976	0.64	0.45
		221	22.6	132.8	406.4 406.4	1 19	610		6.7	6.7	4.2629	4.2629	0.64	0.64
	Bend	221	22.6		406.4 406.4	1 19	610		6.7	6.7	4.2803	2.9976	0.64	0.45
0000		221	22.6		406.4 406.4	1 19	406		6.7	6.7	5.083	5.083	0.76	0.76
0000	Bend	221	22.6	132.8	406.4 406.4	06.4 1	406		6.7	6.7	5.1299	2.8498	0.77	0.43
2080 2090	2090 Pipe	221	22.6	132.8	406.4 406.4	06.4 1			6.7	6.7	3.4289	3.4289	0.51	0.51
2090 2100 Pipe		221	22.6	132.8	406.4 406.4	06.4 1			6.7	6.7	3.4289	3.4289	0.51	0.51
2110 2120 1	2120 Reducer	221		132.8	508 40	406.4 1		18	8.625	6.7	4.2861	3.7079	0.50	0.55
2120 2130 Elbow		221		132.8	508 508	1 1	762		8.625	8.625	5.3297	5.3297	0.62	0.62
	Bend	221	22.6	132.8	508 508	1 1	762		8.625	8.625	5.3514	3.7467	0.62	0.43
2130 2140 Pipe		221	22.6	132.8	508 508	1			8.625	8.625	4.2861	4.2861	0.50	0.50
2010 2200 Elbow		221	22.6	132.8	406.4 40	4 406.4 1	610		6.7	6.7	4.2629	4.2629	0.64	0.64
		221	22.6	132.8	406.4 40	4 406.4 1	610		6.7	6.7	4.2803	2.9976	0.64	0.45
2200 2220 Elbow		221		132.8	406.4 40	4 406.4 1	406		6.7	6.7	5.083	5.083	0.76	0.76
_	Bend	221		132.8	406.4 40	4 406.4 1	406		6.7	6.7	5.1299	2.8498	0.77	0.43
2220 2230 Pipe		221	22.6	132.8	406.4 406.4 1	16.4 1			6.7	6.7	3.4289	3.4289	0.51	0.51
2230 2240 Pipe		221	22.6	132.8	406.4 406.4	1 19			6.7	6.7	3.4289	3.4289	0.51	0.51
2250 2260	2260 Reducer	221	22.6	132.8	508 40	406.4 1		18	8.625	6.7	4.2861	3.7079	0.50	0.55
2260 2270 Elbow		221	22.6	132.8	508 508	1	762		8.625	8.625	5.3297	5.3297	0.62	0.62
	Bend	221	22.6	132.8	508 508	1	762		8.625	8.625	5.3514	3.7467	0.62	0.43
2270 2280 Pipe	Pipe	221	22.6	132.8	508 508	1			8.625	8.625	4.2861	4.2861	0.50	0.50
1990 2500 Pipe	Pipe	221	22.6	132.8	60.3 60	60.3 1			1.5375	1.5375	0.50877	0.50877	0.33	0.33
2000 2600 Pipe	Pipe	221	22.6	132.8	60.3 60	60.3 1			1.5375	1.5375	0.50877	0.50877	0.33	0.33
2090 2700	Pipe	221	22.6	132.8	33.7 33.7	3.7 1			1.275	1.275	0.28434	0.28434	0.22	0.22
2230 2800 1	Pipe	221	22.6	132.8	33.7 33.7	3.7 1			1.275	1.275	0.28434 0.28434	0.28434	0.22	0.22
Voreion 7 30							Vorifico	Vorification Internal Drossure	Drocertre					

External Pressure Design of Pipe and Pipe Fittings according to EN 13480-3 (2012)

Design of pipe and pipe fittings under external pressure according to EN 13480-3 (2012)

Pipes, Elbows, Mitre Bends and Reducers

Interstiffener collapse

The thickness of the pipe within the unstiffened length L shall not be less than that determined by the following.

$$P_{r} \geq k. P_{c}$$

$$P_{y} = \frac{Se_{a}}{R_{m}}$$

$$P_{m} = \frac{E_{t}e_{a}\varepsilon}{R_{m}}$$

$$\varepsilon = \frac{1}{n_{cyl^{2}} - 1 + \frac{Z^{2}}{2}} \left\{ \frac{1}{\left(\frac{n_{cyl^{2}}}{Z^{2}} + 1\right)^{2}} + \frac{e_{a^{2}}}{12R_{m^{2}(1-v^{2})}} \left(n_{cyl^{2}} - 1 + Z^{2}\right)^{2} \right\}$$

$$Z = \frac{\pi R_{m}}{L}$$

using the calculated value of Pm/Py, Pr/Py is determined from Table 9.3.2.1 of Subsection 9.3.2 where

 n_{cyl} = integer >= 2 to minimize the value of P_m

 R_m = mean radius of the pipe

L = length between the stiffener, is calculated from CAEPIPE input as follows

for Pipe, L = length of pipe (= distance between the "From" and "To" node of CAEPIPE)

for Elbow and Mitre bend, L = arc length measured on extrados of elbow and mitre bend

for Reducer, L = Length of the reducer

Et = Young's modulus of material at design temperature = max of CAEPIPE Temperature T1 through T10

 e_a = analysis thickness of reducer at smaller end = e_n – corr.all – mill tolerance

 e_n = nominal thickness of reducer at smaller end

k = factor = 1.5

Pc = external pressure = maximum negative CAEPIPE input pressures P1 through P10

S = elastic stress limits for pipe and stiffener

= $R_{p0.2,t}$ for non-austenitic steels

= (R_{p0.2,t} / 1.25) for austenitic steels

R_{p0.2,t} = minimum 0.2% proof strength at temperature of pipe (= Tensile strength of material from CAEPIPE)

Additional check for Reducers

In addition to the above, as stated in Subsection 9.4.2 of EN 13480-3, the moment of inertia, Ix taken parallel to the axis of the cylinder, of the part of the cone and cylinder with a distance of $\sqrt{D_{eq} \cdot e}$ on either side of the junction is not less than:

$$I_x = 0.18 D_{eq} L D_s^2 \frac{p_c}{E_t} \le I_{xa}$$

where

 D_{eq} = equivalent diameter = $\frac{\frac{D_1 + D_2}{2}}{\cos(\alpha)}$

D1 = outside diameter of larger end of reducer

D2 = outside diameter of smaller end of reducer

 α = cone angle of reducer input in CAEPIPE

 I_{xa} = moment of inertia of reducer at smaller end

Ds = diameter of the centroid of the moment of inertia of the stiffening cross section calculated as shown below

$$I_{cone} = \left(\sqrt{D_{eq}e_1}.e_1\right) \left(\frac{D_{mcon}}{2}\right)^2 = (A_{cone}) \left(\frac{D_{mcon}}{2}\right)^2$$
$$I_{Cyl} = \left(\sqrt{D_{eq}e_2}.e_2\right) \left(\frac{D_{mcyl}}{2}\right)^2 = (A_{cyl}) \left(\frac{D_{mcyl}}{2}\right)^2$$
$$I_{stiff} = \left(A_{cone} + A_{cyl}\right) \left(\frac{D_s}{2}\right)^2$$

From the above,

$$I_{cone} + I_{Cyl} = I_{stiff}$$

and

[_____

$$D_s = 2 \sqrt{\frac{I_{stiff}}{\left(A_{cone} + A_{cyl}\right)}}$$

7

e1 = analysis thickness of reducer at larger end = e_{n1} – corr.all – mill tolerance e2 = analysis thickness of reducer at smaller end = e_{n2} – corr.all – mill tolerance

en1 = nominal thickness of reducer at larger end

 e_{n2} = nominal thickness of reducer at smaller end

Verification and Validation for External Pressure Design of Pipe and Pipe Fittings

Calculation of Straightaccording to Chapter 9.3	-		
<u>General</u>			
Material	EN 10216-2	10CrMo9-10 W1.73	80
Туре	Non-auster	itic steels; Enter "N	S"
	Austenitic s	teels; Enter "AS"	
Design Temperature (Deg.C)	T _d		
Yield strength at design temperature	$R_{p0.2T}$		
Design Pressure (MPa)	P _c		
Modulus of Elasticity at Design Temperature	E _t		
Outer Diameter (mm)	Do		
Nominal Wall Thickness in Straight	e _{nom}		
Bend Radius (mm)	R		
Corrosion Allowance (mm)	<i>C</i> ₀ =	1.00	
Negative Tolerance	<i>C</i> ₁		
Thinning allowance due to manufacturing	<i>C</i> ₂		
No. of circumferential waves for an unstiffned length of shell	n _{cyl}		
Unstiffend length of shell	L		
Poisson's ratio	v	0.3	
Poisson's ratio	V	0.3	

<u>Input</u>							
	Pipe: 350		NS		221		229.8
	Elbow: 350		NS		221		229.8
DN :=	Pipe: 350	Material :=	NS	Td :=	221	Rp0.2T :=	229.8
	Pipe: 400		NS		221		229.8
	Pipe: 500		NS		221		229.8
	Elbow: 150		NS		221		229.8
	Pipe: 350		0.10		198000		
	Elbow: 350		0.10		198000		
DN :=	Pipe: 350	Pc :=	0.10	Et :=	198000		
	Pipe: 400		0.10		198000		
	Pipe: 500		0.10		198000		
	Elbow: 150		0.10		198000		
	Pipe: 350		355.6		8		1467
	Elbow: 350		355.6		8		1116.52
	Pipe: 350	Do :=		enom :=	8	L :=	467
DN	Pipe: 400	50	406.4	chom	8.8	L	1500
	Pipe: 500		508				1000
	Elbow: 150		168.3		4.5		491.895
	EIDOW. 150		100.5		4.5		491.895
	Pipe: 350		1		0		2
	Elbow: 350		1		0		2
DN :=	Pipe: 350	C1 :=	1	C2 :=	0	ncyl :=	2
	Pipe: 400		1.1		0		2
	Pipe: 500		1.375		0		2
	Elbow: 150		0.5625		0		2
Result							
Lower Bou	und Collapse	Pressure	Pr				
Utilizatior	n factor shall	be equal to or					
greater th		•	Pr/kPc				
9.3.2 Int	erstiffener co	ollapse					
$P_y = \frac{Se_y}{R_n}$	$\frac{a}{n}$ where R_m	= mean radiu	s of the cylin	nder (9.3.2-	1)		
$P_m = \frac{1}{2}$	$\frac{E_t e_a \varepsilon}{R_m}$ (9.3.2-	2)					
$\varepsilon = \frac{1}{n_{cv}}$	$\frac{1}{\sqrt{2^{2}-1+\frac{Z^{2}}{2}}}\left\{\frac{n}{\left(\frac{n}{2}\right)}\right\}$	$\frac{1}{\frac{yl^2}{2}+1}^2 + \frac{e_{a^2}}{12R_{m^2(1)}}$	$\frac{1}{-v^2}(n_{cyl^2}-1)$	$+Z^{2})^{2}$ (9	.3.2-3)		
		<u> </u>)			
	^R m (9.3.2-4)						

	Pipe: 350		6.00		173.80		229.8
	Elbow: 350		6.00		173.80		229.8
DN :=	Pipe: 350	ea :=	6.00	Rm :=	173.80	S :=	229.8
	Pipe: 400		6.70		198.80		229.8
	Pipe: 500		8.63		248.50		229.8
	Elbow: 150		2.94		81.90		229.8
	Pipe: 350		7.93		0.37		0.000715316
	Elbow: 350		7.93		0.49		0.001387256
DN :=	Pipe: 350	Py :=	7.93	Z :=	1.17	E :=	0.018177071
	Pipe: 400		7.74		0.42		0.000898377
	Pipe: 500		7.98		0.78		0.005725034
	Elbow: 150		8.24		0.52		0.001709149
	Pipe: 350		4.89		0.62		
	Elbow: 350		9.48		1.20		
DN :=	Pipe: 350	Pm :=	124.25	Pm/Py :=	15.66		
	Pipe: 400		5.99		0.77		
	Pipe: 500		39.34		4.93		
	Elbow: 150		12.14		1.47		
	Pipe: 350		0.31		0.15		2.441618389
	Elbow: 350		0.58		0.15		4.604731871
DN :=	Pipe: 350	Pr/Py :=	0.96	kPc :=	0.15	Pr :=	7.604026467
	Pipe: 400		0.39		0.15		2.990634655
	Pipe: 500		0.91		0.15		7.263678959
	Elbow: 150		0.67		0.15		5.522284799
	Pipe: 350		16.28				
	Elbow: 350		30.70				
DN :=	Pipe: 350	Pr/kPc :=	50.69				
	Pipe: 400		19.94				
	Pipe: 500		48.42				
	Elbow: 150		36.82				

according to Chapter 9	.4 of SS-E	N 13480-3:2	2012 (E) I	ssue 1 (2012-0
<u>Input</u>				
Material	EN 10216-2	10CrMo9-10	W1.7380	
Туре		itic steels; En		
	Austenitic s	steels; Enter "/	AS"	
Design Temperature (Deg.C)	T			
Design reinperature (Deg.C)	T_d			
Design Stress (MPa)	f			
	_			
Design Pressure (MPa)	P _c			
	D			
Yield strength at design temperature	$R_{p0.2T}$			
Modulus of Elasticity at Design	Et			
Small Pipe Outer Diameter	D_1			
Nominal Wall Thickness in Small Pipe	P.			
(mm)	e_{n1}			
Nominal Wall Thickness of Reducer	0			
	e _{nom}			
Semi Angle of Reducer at Apex	α			
		4.00		
Corrosion Allowance (mm)	$C_0 =$	1.00		
Negative Tolerance in Small Pipe	C			
	C _{s1}			
Negative Tolerance in Reducer	<i>C</i> ₁			
Thinning allowance due to manufacturing, Small Pipe	Cs_2			
Thinning allowance due to	C			
manufacturing, Reducer	<i>C</i> ₂			
Number of circumferential waves for	n _{cyl}			
an unstiffend part of the cylinder	C y t			
Unstiffend length of shell	L			
	-			
Poisson's ratio	v	0.3		

							<u>out</u>
22		NS		ſ		200x150	
22		NS		C C		400x200	
22	Td :=	NS	Type :=	C	Reducer Type :=	400x350	
22	TU	NS	Type	C	Reducer Type	400x330 500x400	
22		113				3008400	
0.787		6.3		219.1		200x150	
1		8.8		406.4		400x200	
1	Cl1:=	8.8	en1:=	406.4	D :=	400x350	DN :=
1.37		11		508		500x400	
4		4.5		168.3		200x150	
6		6.3		219.1		400x200	
	enom :=	8	en2	355.6	D1 :=	400x350	DN :=
8		8.8		406.4		500x400	
0.562		0.5625		30		200x150	
0.787		0.7875		46		400x200	
	Cs1 :=	1	C1 :=	8	$\alpha \coloneqq$	400x350	DN :=
1		1.1		18		500x400	
0		0		0		200x150	
0		0		0		400x200	
0	Pc :=	0	C2 :=	0	Cs2 :=	400x350	DN :=
0		0		0		500x400	
229		2		152		200x150	
229		2		356		400x200	
229	Rp0.2T :=	2	ncyl :=	356	L :=	400x350	DN :=
229		2		508		500x400	
		132.8		198000		200x150	
		132.8		198000		400x200	
		132.8	f :=	198000	Et :=	400x350	DN :=
		132.8		198000		500x400	

Result							
Reducers	Concentric	and Eccentric					
Lower Bou	und Collap:	se Pressure	Pr				
Utilizatio	factor cha	ll he equal to or					
		all be equal to or	D./I.D.				
greater th	an 1		Pr/kP				
9.3.2 Int	erstiffenei	collapse					
$P_y = \frac{Se_y}{R_m}$	a where R	m = mean rad	ius of th	e cylinder (9.3.2	2-1)		
$P_{m} = \frac{1}{2}$	E _t e _a ε R _m (9.3.	2-2)					
т	R _m	,					
$\varepsilon = \frac{1}{n_{cy}}$	$\frac{1}{vl^{2}-1+\frac{Z^{2}}{2}}\left\{\frac{1}{\left(\frac{1}{2}\right)^{2}}\right\}$	$\frac{1}{\frac{n_{cyl^2}}{Z^2}+1} + \frac{e}{12R_m^2}$	$\frac{2^2}{2^2(1-\nu^2)} (n_0)$	$(z_{yl^2} - 1 + Z^2)^2$	9.3.2-3)		
$Z = \frac{\pi}{2}$	^R m (9.3.2-	4)					
	200x150		4.51		193.70		223.6654943
	400x200		6.70		312.75		450.2213078
DN :=	400x350	e1:=	6.70	Dm := (D+D1)/2.0	381.00	Deq :=	384.7443051
	500x400		8.63		457.20		480.7285289
	200x150		2.94		114.12		229.8
	400x200		4.51		247.02		229.8
DN '=	400x350	e2:=		Rm :=	181.54	S :=	229.8
DIV.	500x400		6.70		226.73	5.	229.8
	200x150		9.09		2.36		0.059300674
	400x200		6.23		2.18		0.055178791
DN :=	400x350	Py :=	8.48	Z :=	1.60	E :=	0.036390344
	500x400		8.74		1.40		0.027759249
	200x150		464.30		51.09		
	400x200		296.33		47.54		
DN :=	400x350	Pm :=	265.92	Pm/Py :=	31.35		
	500x400		209.09		23.92		
	200x150		0.96		0.15		8.709931526
	400x200		0.96		0.15		5.974238107
DN	400x350	Pr/Py (from Table 9.3.2-1) :=		kPc :=	0.15	Pr :=	8.128947416
	400x330 500x400	Table 5.5.2-1)	0.90	KI C	0.15		8.379055655
	200 475		F0.0-				
	200x150		58.07				
~	400x200		39.83				
DN :=	400x350	Pr/kPc :=					
	500x400		55.86				

9.4 Red	ucers (Co	nical Shells)					
$I_x = 0.1$	$18D_{eq}LD_{s^2}$	$\frac{p_c}{E_t}$ (9.4.2-	1)				
I _{cone} =	$\left(\sqrt{D_{eq}e_1}.e\right)$	$\frac{p_c}{E_t} \qquad (9.4.2-1) \left(\frac{D_{mcon}}{2}\right)^2$					
$I_{Cyl} = \left($	$\sqrt{D_{eq}e_2}.e_2$	$\left(\frac{D_{mcyl}}{2}\right)^{2}$ $_{cyl}\left(\frac{D_{s}}{2}\right)^{2}$					
$I_{stiff} =$	$(A_{cone} + A$	$(yl)\left(\frac{D_s}{2}\right)^{-1}$					
From the	e above,						
I _{cone} + I	$I_{Cyl} = I_{stif}$	f					
and							
$D_s = 2$	$\frac{I_{stiff}}{(A_{cone} + A_{cone})}$	I _{cyl})					
	200x150		214.59		1650343		514731.0597
	400x200		399.70		14697164		2341465.127
DN :=	400x350	Dm,con:=	399.70	Icone:=	13586469	Icyl:=	8808375.744
	500x400		499.38		34624396		15186946.3
	200x150		199.02		122.4123		514731.0597
	400x200		345.37		1738.027		2341465.127
DN :=	400x350	Ds :=	377.54	lx :=	1774.869	lxa :=	8808375.744
	500x400		461.47		4727.797		15186946.3
	200x150		Valid				
	400x200		Valid				
DN :=	400x350	lx < lxa :=	Valid				
	500x400		Valid				

External Pressure Design Results from CAEPIPE

								Pipe ma	aterial 1:	Pipe material 1: EN 10216-2 10CrMo9-10 Seamless	
Densi Tensil	Density = 7850 (kg/m3), Nu = 0.300, Joint factor = 0.80, Type Tensile strength = 229.8 (N/mm2)	(kg/m3), 1 = 229.8	Nu = (N/mm	.300, Jo	int factor	= 0.80,	Type =	= CS			
Temp (C)	(kN/mm	Alpha (mm/i	mm/C)	ff (N/mm2)	E Alpha ff fCR (kN/mm2) (mm/mm/C) (N/mm2)						
20	211	11.51E-6	E-6	137.1							
50	209	11.78E-6	9-Ц	136.9							
100	206	12.10E-6	E-6	136.5							
150	203	12.43E-6	E-6	132.8							
200	199	12.75E-6	E-6	132.8							
250	196	13.08E-6		132.8							
300	192	13.22E-6		132.8							
										Pipe Sections (5)	
Name	Nom Dia	Sch OD (mm)	OD Thk Cor.Al (mm) (mm) (mm)	Cor.Al M (mm) (%	M.Tol Ins.Dens Ins.T (%) (kg/m3) (mm	Ins.Dens In (kg/m3) (r		Lin.Dens (kg/m3)	hk Lin.Dens Lin.Thk (kg/m3) (mm)	¢ Soil	
150	150 3	168.3 4.5	4.5	1	12.5 150			2700			
200	200 3	219.1 6.3	6.3	1	12.5 150		120 2	2700	+		
350	350 3	355.6	8	1	12.5 150		120 2	2700	-		
400	400 3	406.4 8.8	8.8	1	12.5 150		140 2	2700	-		
500	500 3	508	11	1 1:	12.5 200		140 2	2700	1		
										Pipe Loads (1)	
Name T1		P1 T2	P2 ;	Specific /	Specific Add.Wgt. Wind	Wind					
		ar) (C)	(bar)	gravity (kg/m)	(kg/m)	Load					
-	221 22	22.6 20	-1.00 0.003	0.003							
Versic	Version 7.30								Verifio	Verification_External_Pressure Mar 2	Mar 27,2015

Internal Pressure Design: EN 13480-3 (2012) (13)	OD2 Thk1 Thk2 Cor.All Radius Length Cone Angle Pr K.Pc Ix Ixa	(kN/mm2) (mm) (mm) (mm) (mm) (mm) (mm) (mm)	355.6 8 8 1 1467 24.4 1.50 16.28	355.6 8 8 1 533 1116.52 46.0 1.50 30.70	355.6 8 1 467 76.0 1.50 50.69	355.6 8.8 8 1 356 8 81.3 1.50 54.19 1778.71 8.808376E+6	06.4 8.8 1 1500 29.9 1.50 19.94	406.4 11 8.8 1 508 18 83.8 1.50 55.86 4738.02 1.5186949E+7	08 11 1 1 1000 72.6 1.50 48.42	406.4 11 8.8 1 508 18 83.8 1.50 55.86 4738.02 1.5186949E+7	219.1 8.8 6.3 1 356 46 59.7 1.50 39.83 1741.79 2.3414655E+6	38.3 6.3 4.5 1 152 30 87.1 1.50 58.07 122.677 514731	38.3 4.5 4.5 1 2771 12.6 1.50 8.41	38.3 4.5 1 229 491.895 55.3 1.50 36.83	38.3 4.5 1 2771 12.6 1.50 8.41		
ternal Pressu	OD1 OC	2) (mm) (m	355.6 35	355.6 35	355.6 35	406.4 35	406.4 406.4	508 40	508 508	508 40	406.4 21	219.1 168.3	168.3 168.3 4.5	168.3 168.3 4.5	168.3 168.3 4.5		
Int	ш		198	198	198	198	198	198	198	198	198	198	198	198	198	_	
	s Yield) (N/mm2)	229.8	229.8	229.8	229.8	229.8	229.8	229.8	229.8	229.8	229.8	229.8	229.8	229.8		
	All.Stress	(N/mm2)	132.8	132.8	132.8	132.8	132.8	132.8	132.8	132.8	132.8	132.8	132.8	132.8	132.8	-	
	Press (Pc)	(bar)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
	Temp	(C)	221	221	221	221	221	221	221	- 221	- 221	- 221	221	221	221		
	Element	Type	Pipe	11B Elbow	Pipe	Reducer 221	Pipe	Reducer 221	Pipe	Reducer 221	Reducer 221	Reducer 221	70A Pipe	70B Elbow	Pipe		
	To		11A	11B	12	20	25	30	35	40	50	60	70A	70B	80	-	
	From		10	11A	11B	12	20	25	30	35	40	50	60	70A	70B		