

The FASTEST Solutions for Piping Design and Analysis.

Version 6.60

Disclaimer

Please read the following carefully:

This software and this document have been developed and checked for correctness and accuracy by SST Systems, Inc. (SST) and InfoPlant Technologies Pvt. Ltd. (InfoPlant). However, no warranty, expressed or implied, is made by SST and InfoPlant as to the accuracy and correctness of this document or the functioning of the software and the accuracy, correctness and utilization of its calculations.

Users must carry out all necessary tests to assure the proper functioning of the software and the applicability of its results. All information presented by the software is for review, interpretation, approval and application by a Registered Professional Engineer.

CAEPIPE is a trademark of SST and InfoPlant.

CAEPIPE Version 6.60, ©2011, SST Systems, Inc. and InfoPlant Technologies Pvt. Ltd. All Rights Reserved.

SST Systems, Inc. 1798 Technology Drive, Suite 236 San Jose, California 95110 USA

InfoPlant Technologies Pvt. Ltd. 7, Crescent Road Bangalore – 560001 India Tel: (408) 452-8111 Fax: (408) 452-8388 Email: info@sstusa.com www.sstusa.com

Tel: +91-80-40336999 Fax: +91-80-41494967 Email: iplant@vsnl.com www.infoplantindia.com Annexure A

ASME B31.x

Code Compliance

Allowable Pressure

For straight pipes and bends (including closely spaced and widely spaced miter bends), the allowable pressure is calculated from para. 504.1.2.

$$P = \frac{2SEt_a}{D - 2Yt_a}$$

where

P = allowable pressure

S = basic allowable stress at maximum of CAEPIPE input temperatures T_1 , T_2 and T_3

E = longitudinal or spiral joint factor (input as material property) from para. 502.3.1 and Table 502.3.1

Table 502.3.1 provides maximum allowable hoop stress values (SE) as a function of metal temperature and includes Longitudinal or Spiral Joint Factor (E) for various materials. Divide SE value by E value provided in Table 502.3.1 to obtain basic allowable stress S. For materials where E is not given explicitly in Table 502.3.1, use E=1.0.

Hence, SE in the above formula for allowable pressure P is the allowable hoop stress per para 502.3.1 and Table 502.3.1.

 t_a = available thickness for pressure design (as per para 504.1.1)

 $= t_n \times (1 - \text{mill tolerance}/100) - \text{corrosion allowance}$

(Any additional thickness required for threading, grooving, erosion, corrosion, etc., should be included in corrosion allowance)

t_n = nominal pipe thickness

D = outside diameter

d = inside diameter

Y = pressure coefficient

For ductile non-ferrous materials and ferritic and austenitic steels,

Y = 0.4 for
$$D/t_a \ge 6$$
 and Y = $\frac{d}{d+D}$, for $4 \le D/t_a < 6$

For Cast Iron, Y = 0.0

Sustained Stress (in corroded condition)

The stress (S_L) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from para 502.3.2(d).

$$S_{L} = \frac{PD}{4t_{c}} + \frac{\sqrt{(i_{i}M_{i})^{2} + (i_{o}M_{o})^{2}}}{Z_{c}} \le S_{h}$$

where

 $P = maximum of CAEPIPE input pressures P_1, P_2 and P_3$

D = outside diameter

 t_c = nominal thickness – corrosion allowance, as per para 502.3.2 (d)

 i_i = in-plane stress intensification factor

 i_{o} = out-of-plane stress intensification factor

 M_i = in-plane bending moment

 M_{a} = out-of-plane bending moment

 Z_c = corroded section modulus as per para 502.3.2 (d)

 S_h = basic allowable stress at maximum of CAEPIPE input temperatures T_1 , T_2 and T_3

Occasional Stress (in corroded condition)

The stress (S_{Lo}) due to occasional loads is calculated as the sum of stress due to sustained loads (S_L) and stress due to occasional loads (S_o) such as earthquake or wind. Wind and earthquake are not considered concurrently (see para. 502.3.3 (a)).

$$S_{Lo} = \frac{P_{peak}D}{4t_{c}} + \left[\frac{\sqrt{(i_{i}M_{i})^{2} + (i_{o}M_{o})^{2}}}{Z_{c}}\right]_{sustained} + \left[\frac{\sqrt{(i_{i}M_{i})^{2} + (i_{o}M_{o})^{2}}}{Z_{c}}\right]_{occasional} \le 1.33S_{h}$$

where

P_{peak} = peak pressure = (peak pressure factor) x P, where P is defined above

Expansion Stress (in uncorroded condition)

The stress (S_E) due to thermal expansion is calculated from para 519.4.5 and para 519.3.5.

$$S_E = \sqrt{S_b^2 + 4S_t^2} \le S_A$$

where

$$S_b$$
 = resultant bending stress = $\frac{\sqrt{(i_i M_i)^2 + (i_o M_o)^2}}{Z}$

$$S_t =$$
torsional stress = $\frac{M_t}{2Z}$

M_t = torsional moment

Z = uncorroded section modulus; for reduced outlets, effective section modulus

$$S_A = f(1.25S_{Cold} + 0.25S_{hot})$$
 (see para. 502.3.2 (c))

f = stress range reduction factor from Figure 502.3.2

 S_{cold} = basic allowable stress at minimum of CAEPIPE input temperatures T_1 , T_2 , T_3 and T_{ref}

 S_{hot} = basic allowable stress at maximum of CAEPIPE input temperatures T_1 , T_2 , T_3 and T_{ref}

When S_h is greater than S_L , the allowable stress range may be calculated as

$$S_A = S_A + f(S_h - S_L)$$

where, S_h = basic allowable stress at maximum of CAEPIPE input temperatures T_1 , T_2 and T_3

This is specified as an analysis option: "Use liberal allowable stresses", in the CAEPIPE menu Options->Analysis on the Code tab.

Note:

Refer Annexure B for the details of "Thickness" and the "Section Modulus" used for weight, pressure and stress calculations.

	Elevibility	Floribility	Stress Inten Facto	sification or	
Description	Characteristic,	Factor,	i _i [Note (1)]	i _o [Note (2)]	Illustration
Welding elbow or pipe bend	+D	1.65	0.0	0.75	
[Notes (3), (4), (5), (6), and (7)]	$\frac{t\kappa}{r^2}$	$\frac{1.05}{h}$	$\frac{0.9}{h^2/3}$	$\frac{0.75}{h^{2}/_{5}}$	R = bend radius
Closely spaced miter bend	to (cot iii)	1.52		0.75	
[Notes (3), (4), (5), and (7)], $s < r(1 + \tan \theta)$	$\frac{ls}{r^2}\left(\frac{\cot\theta}{2}\right)$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$\frac{0.75}{h^{2/3}}$	$\theta = \frac{s \cot \theta}{2}$
Widely spaced miter bend	$t/1 + \cot \theta$	1.52	0.9	0.75	
s $\geq r(1 + \tan \theta)$	$r(\overline{2})$	h ⁵ %	$h^{2/3}$	$h^{2/3}$	$R = \frac{r(1+\cot\theta)}{2}$
Welding tee ASME B16.9 [Notes (3) and (4)]	$4.4\frac{t}{r}$	1	0.75 <i>i_a</i> + 0.25	$\frac{0.9}{h^{2/_3}}$	
Reinforced fabricated tee with pad or saddle [Notes (3), (4), and (9)]	$\frac{(t+{}^{1}\!/_{2}T)^{\frac{5}{2}}}{t^{\frac{3}{2}}r}$	1	0.75 <i>i_o</i> + 0.25	$\frac{0.9}{h^{2}/s}$	Pad saddle
Unreinforced fabricated tee [Notes (3) and (4)]	$\frac{t}{r}$	1	0.75 <i>i_o</i> + 0.25	$\frac{0.9}{h^{2/_3}}$	
Butt welded joint, reducer, or welding neck flange		1	1.0	1.0	×e
Double-welded slip-on flange		1	1.2	1.2	- in

Table 519.3.6 Flexibility Factor, k, and Stress Intensification Factor, i

	Flexibility	Flexibility	Stress Inte Fac	ensification tor	
Description	Characteristic, h	Factor,	<i>i_i</i> [Note (1)]	i _o [Note (2)]	Illustration
Fillet welded joint (single- welded), socket welded flange, or single-welded slip-on flange		1	1.3	1.3	
Lap flange (with ASME B16.9 lap-joint stub)	***	1	1.6	1.6	
Threaded pipe joint or threaded flange		1	2.3	2.3	244
Corrugated straight pipe, or corrugated or creased bend [Note (10)]		5	2.5	2.5	

Table 519.3.6 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

GENERAL NOTE: For reference, see Table 519.3.6 Illustration beginning on page 40.

NOTES:

(1) In-plane.

(2) Out-of-plane.

(3) For fittings and miter bends the flexibility factors, *k*, and stress intensification factors, *i*, in the Table apply to bending in any plane and shall not be less than unity; factors for torsion equal unity.

(4) Both factors apply over the effective arc length (shown by heavy center lines in the sketches) for curved and miter elbows and to the intersection point for tees. The values of k and i can be read directly from Chart A by entering with the characteristic, h, computed from the equations given where

R = bend radius of welding elbow or pipe bend, in. (mm)

r = mean radius of matching pipe, in. (mm)

s = miter spacing at center line, in. (mm)

T = pad or saddle thickness, in. (mm)

t = nominal wall thickness, in. (mm), of: part itself for elbows and curved or miter bends; mathing pipe for welding tees; run or header for fabricated tees (provided that if thickness is greater than that of matching pipe, increased thickness must be maintained for at least one run outside diameter to each side of the branch outside diameter).

 θ = one-half angle between adjacent miter axes, deg

(5) Where flanges are attached to one or both ends, the values of k and T in the Table shall be corrected by the factors C₁ given below, which can be read directly from Chart B; entering with the computed h: one end flanged, h^{1/4} ≥ 1; both ends flanged, h^{1/4} ≥ 1.

(6) The engineer is cautioned that cast butt welding elbows may have considerably heavier walls than that of the pipe with which they are used. Large errors may be introduced unless the effect of these greater thicknesses is considered.

(7) In large-diameter thin-wall elbows and bends, pressure can significantly affect the magnitude of flexibility and stress intensification factors. To correct values obtained from the Table for the pressure effect, divide:

 (a) flexibility factor, k, by

$$1 + 6 \frac{P}{E_c} \left(\frac{r}{t}\right)^{\frac{1}{3}} \left(\frac{R}{r}\right)^{\frac{1}{3}}$$

(b) stress intensification factor, i, by

$$1 + 3.25 \frac{P}{E_c} \left(\frac{r}{t}\right)^{5/2} \left(\frac{R}{r}\right)^{2/2}$$

where

 E_c = cold modulus of elasticity, ksi (MPa)

P = gage pressure, psi gage (kPa gage)

(8) Also includes single-miter joint.

(9) When T > 1.5t, use h = 4.05 t/r.

(10) Factors shown apply to bending; flexibility factor for torsion equals 0.9.

Allowable Pressure

For straight pipes and bends (including closely spaced and widely spaced miter bends), the allowable pressure is calculated from para. 841.1.1.

$$P = \frac{2SEt_a FT}{D}$$

where

P = allowable pressure

S = specified minimum yield strength from para. 817.1.3 (h) and 841.1.4

E = longitudinal joint factor (input as material property), obtained from Table 841.1.7-1

 $t_{\rm a}$ = available thickness for pressure design

= $t_n \times (1 - mill tolerance/100) - corrosion allowance$

(Any additional thickness required for threading, grooving, erosion, corrosion, etc., should be included in corrosion allowance.)

t_n = nominal pipe thickness

D = nominal outside diameter

F = construction type design factor, obtained from Table 841.1.6-1

T = temperature derating factor, obtained from Table 841.1.8-1 and para. 841.1.8

Stress due to Sustained and Occasional Loads (Unrestrained Piping)

The sum of longitudinal pressure stress and the bending stress due to external loads, such as weight of the pipe and contents, seismic or wind, etc. is calculated according to paras. 833.6 (a) and 833.6 (b) along with paras. 805.2.3, 833.2 (b), 833.2 (d), 833.2 (e) and 833.2 (f).

Please note, the "include axial force in stress calculations" option is turned ON by default for ANSI B31.8.

Sustained Stress S_L (required to compute Expansion Stress Allowable S_A): <u>For Pipes and Long Radius Bends</u>

$$S_{L} = \left| \frac{PD}{4t_{n}} + \frac{R}{A} \right|_{Sustained} + \left[\frac{\sqrt{(i_{i}M_{i})^{2} + (i_{o}M_{o})^{2}}}{Z} \right]_{Sustained}$$

For other Fittings or Components.

$$S_{L(fc)} = \left| \frac{PD}{4t_n} + \frac{R}{A} \right|_{Sustained} + \left[\frac{\sqrt{(0.75i_iM_i)^2 + (0.75i_oM_o)^2 + (M_i)^2}}{Z} \right]_{Sustained}$$

Sustained + Occasional Stress S_{LO}:

For Pipes and Long Radius Bends

$$S_{Lo} = S_L + \left| \frac{(P_{peak} - P)D}{4t_n} + \frac{R}{A} \right|_{occasional} + \left[\frac{\sqrt{(i_i M_i)^2 + (i_o M_o)^2}}{Z} \right]_{occasional} \le 0.75ST$$

For Fittings or Components

$$S_{Lo} = S_{L(fc)} + \left| \frac{(P_{peak} - P)D}{4t_n} + \frac{R}{A} \right|_{Occasional} + \left[\frac{\sqrt{(0.75i_i M_i)^2 + (0.75i_o M_o)^2 + (M_i)^2}}{Z} \right]_{occasional} \le 0.75ST$$

where

P = maximum operating pressure = max (P1, P2, P3)

P_{peak} = Peak pressure factor x P

D = nominal outside diameter

t_n = nominal thickness

 i_i = in-plane stress intensification factor; the product $0.75i_i$ shall not be less than 1.0

 i_a = out-of-plane stress intensification factor; the product $0.75i_a$ shall not be less than 1.0

 M_i = in-plane bending moment

 M_{a} = out-of-plane bending moment

M_t = torsional moment

Z = uncorroded section modulus; for reduced outlets, effective section modulus

R = axial force component for external loads other than thermal expansion and pressure

A = corroded cross-section area (i.e., after deducting for corrosion)

S = specified minimum yield strength from para. 841.1.1(a)

T = temperature derating factor, obtained from para. 841.1.8 and Table 841.1.8-1

Note:

Young's modulus of elasticity corresponding to the lowest operating temperature [=min(T1,T2,T3,Tref)] is used to form the stiffness matrix for Sustained and Occasional load calculations.

Expansion Stress (Unrestrained Piping)

The stress (S_E) due to thermal expansion is calculated from para.833.8.

$$S_E = \sqrt{S_b^2 + 4S_t^2} \le S_A$$

where

$$S_b$$
 = resultant bending stress = $\frac{\sqrt{(i_i M_i)^2 + (i_o M_o)^2}}{Z}$

$$S_t = \text{torsional stress} = \frac{M_t}{2Z}$$

M_t = torsional moment

Z = uncorroded section modulus; for reduced outlets, effective section modulus

Please note, "Liberal allowable" option is always turned ON for ANSI B31.8.

 $S_A = f[1.25(S_C + S_h) - S_L]$

f = stress range reduction factor = 6/N^{0.2}, where N = number of equivalent full range cycles

where $f \le 1.0$ (from para 833.8 (b)).

 $S_c = 0.33S_uT$ at the minimum installed or operating temperature

 $S_h = 0.33S_uT$ at the maximum installed or operating temperature

where

 S_u = specified minimum <u>ultimate</u> tensile strength = 1.5 S_y (assumed), and

 $S_{v=}$ specified minimum yield strength as per para. 841.11(a)

T = temperature derating factor, obtained from para. 841.1.8 and Table 841.1.8-1

Note:

Young's modulus of elasticity corresponding to the lowest operating temperature [=min(T1,T2,T3,Tref)] is used to form the stiffness matrix for Expansion load calculations.

Stress due to Sustained, Thermal and Occasional Loads (Restrained Piping)

The Net longitudinal stress (S_L) due to sustained, thermal expansion and occasional loads for restrained piping is calculated from paras. 833.3 (a), 833.3 (b) along with paras. 805.2.3, 833.2 (a), 833.2 (c), 833.2 (d), 833.2 (e) and 833.2 (f)

$$S_{L} = \max(|S_{p} + S_{x} + S_{B}|, |S_{p} + S_{x} - S_{B}|)_{sustained} + \max(|S_{p} + S_{x} + S_{B}|, |S_{p} + S_{x} - S_{B}|)_{Occasional} + \max(|S_{T}|_{warmest}, |S_{T}|_{coldest}) \le 0.9ST$$

where

Internal pressure stress =
$$S_p = 0.3 \frac{PL}{2t}$$

Thermal expansion stress = $S_T = E\alpha(T_i - T_o)$

Nominal bending stress S_B from Weight and / or other External loads for

For Pipes and Long Radius Bends

$$S_{B} = \frac{\sqrt{(i_{i}M_{i})^{2} + (i_{o}M_{o})^{2}}}{Z}$$

For other Fittings or Components.

$$S_{B} = \frac{\sqrt{(0.75i_{i}M_{i})^{2} + (0.75i_{o}M_{o})^{2} + (M_{i})^{2}}}{Z}$$

Stress due to axial loading (other than temperature and pressure) = $S_x = \frac{R}{A}$

Where

P = maximum operating pressure = max(P1,P2,P3)

D = nominal outside diameter

t_n = nominal thickness

 i_i = in-plane stress intensification factor; the product $0.75i_i$ shall not be less than 1.0

 i_o = out-of-plane stress intensification factor; the product $0.75i_o$ shall not be less than 1.0

- M_i = in-plane bending moment
- M_{o} = out-of-plane bending moment
- M_t = torsional moment
- R = axial force component for external loads
- A = corroded cross-sectional area (i.e., after deducting for corrosion)
- Z = uncorroded section modulus; for reduced outlets, effective section modulus
- S = Specified Minimum Yield Strength (SMYS) from para 841.11 (a)
- T = Temperature derating factor from para. 841.1.8 and Table 841.1.8-1
- E = Young's modulus at ambient (reference) temperature

 T_i = installation temperature = T_{ref} in CAEPIPE

- T_o = warmest or coldest operating temperature
- α = coefficient of thermal expansion at T_o defined above

	Flovibility	Stress Inte Factor, i [Note	ensification es (1) and (2)]	Elevibility	
Description	Factor,	Out-plane, i _o	In-plane, <i>i</i> i	Characteristic, h	Sketch
Welding elbow or pipe bend [Notes (1)–(5)]	<u>1.65</u> h	$\frac{0.75}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$\frac{\overline{7} R_1}{r_2^2}$	$R_1 = bend radius$
Closely spaced miter bend [Notes (1), (2), (3), and (5)] $s < r_2 (1 + \tan \theta)$	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$\frac{\cot\theta}{2}\frac{\overline{Ts}}{r_2^2}$	$\frac{1}{\theta} = \frac{1}{R_1} \frac{1}{2} r_2$
Single miter bend or widely spaced miter bend $s \ge r_2$ (1 + tan θ) [Notes (1), (2), and (5)]	$\frac{1.52}{h^{5/6}}$	$\frac{0.9}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$\frac{1+\cot\theta}{2}\frac{\overline{T}}{r_2}$	\vec{r}_{1}
Welding tee per ASME B16.9 with $r_o \ge \frac{d}{6}$ $T_c \ge 1.5 \overline{T}$ [Notes (1), (2), and (6)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{3}{4}i_{o} + \frac{1}{4}$	$4.4 \ \overline{\frac{7}{r_2}}$	
Reinforced fabricated tee with pad or saddle [Notes (1), (2), (7)–(9)]	1	$\frac{0.9}{h^{2/3}}$	³ / ₄ i ₀ + ¹ / ₄	$\frac{(\overline{T} + \frac{1}{2} t_e)^{5/2}}{\overline{T}^{3/2} r_2}$	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ \hline & & & &$
Unreinforced fabricated tee [Notes (1), (2), and (9)]	1	$\frac{0.9}{h^{2/3}}$	³ / ₄ i _o + ¹ / ₄	$\frac{\overline{T}}{r_2}$	
Extruded outlet $r_o \ge 0.05d$ $T_c < 1.5 \overline{T}$ [Notes (1), (2), and (6)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{3}{4}i_{o} + \frac{1}{4}$	$\left(1+\frac{r_o}{r_2}\right)\frac{\overline{T}}{r_2}$	$\begin{array}{c} 1 \\ \hline 1 \\ \hline 7 \hline 7$
Welded-in contour insert $r_o \ge \frac{d}{8}$ $T_c \ge 1.5 \overline{T}$ [Notes (1), (2), and (10)]	1	$\frac{0.9}{h^{2/3}}$	$\frac{3}{4}i_{o} + \frac{1}{4}$	$4.4 \ \frac{\overline{7}}{r_2}$	
Branch welded-on fitting (inte- grally reinforced) [Notes (1), (2), (9), and (11)]	1,	$\frac{0.9}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$3.3 \frac{\overline{7}}{r_2}$	

Table E-1 Flexibility Factor, k, and Stress Intensification Factor, i

ASME B31.8-2010

Description	Flexibility Factor, k	Stress Intensification Factor, i	Sketch
	n.		Sheren
Buttweld [Notes (1) and (12)]			
$ \begin{split} \overline{7} &\geq 0.237 \text{ in. (6.02 mm),} \\ \delta_{\text{max.}} &\leq \frac{1}{16} \text{ in. (1.59 mm),} \\ &\text{and } \delta_{\text{avg}}/\overline{7} &\leq 0.13 \end{split} $	1	1.0	
Buttweld [Notes (1) and (12)]			
$\overline{T} \ge 0.237$ in. (6.02 mm), $\delta_{max.} \le \frac{1}{8}$ in. (3.18 mm), and $\delta_{avg}/\overline{T} =$ any value	1	1.9 max. or $[0.9 + 2.7(\delta_{avg}/\overline{7})],$ but not less than	$\frac{\overline{\tau}}{1} \sum_{\delta} \frac{\tau}{t_{\delta}}$
Buttweld [Notes (1) and (12)]		1.0	
$ \begin{split} \overline{T} &\leq 0.237 \text{ in. (6.02 mm),} \\ \delta_{\max} &\leq \frac{1}{16} \text{ in. (1.59 mm),} \\ \text{and } \delta_{\text{avg}}/\overline{T} &\leq 0.33 \end{split} $			
	1	1.9 max. or	
AsmE B16.25 [Note (1)]		$1.3 + 0.0036 \frac{D_o}{\overline{7}} + 3.6 \frac{\delta}{\overline{7}}$	
-	1	2.0 max. or	\overline{T}_{11} ,
Concentric reducer per ASME B16.9 [Notes (1) and (13)]		$0.5 + 0.01\alpha \left(\frac{D_{o2}}{\overline{7}_2}\right)^{1/2}$	$ \begin{array}{c} \overline{1} \\ \overline{1} \\ D_{o1} \\ \overline{1} \\$
Double-welded slip-on flange [Note (14)]	1	1.2	
Socket welding flange or fit- ting [Notes (14) and (15)]	1	2.1 max or 2.1 \overline{T}/C_x but not less than 1.3	
Lap joint flange (with ASME B16.9 lap joint stub) [Note (14)]	1	1.6	
Threaded pipe joint or threaded flange [Note (14)]	1	2.3	
Corrugated straight pipe, or corrugated or creased bend [Note (16)]	5	2.5	

Table E-1 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

[Note (16)]

Table E-1 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

ASME B31.8-2010

Table E-1 Flexibility Factor, k, and Stress Intensification Factor, i (Cont'd)

NOTES:

- (1) The nomenclature is as follows:
 - d =outside diameter of branch, in. (mm)
 - R_1 = bend radius of welding elbow or pipe bend, in. (mm)
 - r_0 = radius of curvature of external contoured portion of outlet, measured in the plane containing the axes of the header and branch, in. (mm)
 - r_2 = mean radius of matching pipe, in. (mm)
 - = miter spacing at centerline, in. (mm)
 - $\frac{s}{T}$ = miter spacing at centerate, in. (mm) \overline{T} = nominal wall thickness of piping component, in. (mm)
 - = for elbows and miter bends, the nominal wall thickness of the fitting, in. (mm)
 - = for welding tees, the nominal wall thickness of the matching pipe, in. (mm) = for fabricated tees, the nominal wall thickness of the run or header (provided that if thickness is greater than that of matching pipe, increased thickness must be maintained for at least one run outside diameter to each side of the branch outside diame ter), in. (mm)
 - T_c = the crotch thickness of tees, in. (mm)
 - t_e = pad or saddle thickness, in. (mm)
 - α = reducer cone angle, deg
 - θ = one-half angle between adjacent miter axes, deg
- The flexibility factor, k, applies to bending in any plane. The flexibility factors, k, and stress intensification factors, i, shall not be less (2)than unity; factors for torsion equal unity. Both factors apply over the effective arc length (shown by heavy centerlines in the sketches) for curved and miter bends and to the intersection point for tees.
- The values of k and i can be read directly from Chart A by entering with the characteristic, h, computed from the formulas given. (3) Where flanges are attached to one or both ends, the values of k and i shall be corrected by the factors, Cu, which can be read
- directly from Chart B, entering with the computed h.
- The designer is cautioned that cast buttwelded fittings may have considerably heavier walls than that of the pipe with which they are (4) used. Large errors may be introduced unless the effect of these greater thicknesses is considered.
- (5)In large diameter thin-wall elbows and bends, pressure can significantly affect the magnitudes of k and i. To correct values from the table, divide k by

$$\left[1+6\left(\frac{P}{E_e}\right)\left(\frac{r_2}{\overline{r}}\right)^{7/3}\left(\frac{R_1}{r_2}\right)^{1/3}\right]$$

divide i by

$$\left[1+3.25\left(\frac{P}{E_e}\right)\left(\frac{r_2}{\overline{T}}\right)^{5/2}\left(\frac{R_1}{r_2}\right)^{2/3}\right]$$

where

 E_e = cold modulus of elasticity P = gage pressure, psi (MPa) cold modulus of elasticity, psi (MPa)

- If the number of displacement cycles is less than 200, the radius and thickness limits specified need not be met. When the radius (6) and thickness limits are not met and the number of design cycles exceeds 200, the out-plane and in-plane stress intensification factors shall be calculated as $1.12/h^{2/3}$ and $(0.67/h^{2/3}) + \frac{1}{4}$, respectively.
- (7)When $t_e > 1^{1/2}T$, use $h = 4.05T/r_2$.
- The minimum value of the stress intensification factor shall be 1.2. (8)
- When the branch-to-run diameter ratio exceeds 0.5, but is less than 1.0, and the number of design displacement cycles exceeds (9) 200, the out-plane and in-plane stress intensification factors shall be calculated as $1.8/h^{2/3}$ and $(0.67/h^{2/3}) + \frac{1}{4}$, respectively, unless the transition weld between the branch and run is blended to a smooth concave contour. If the transition weld is blended to a smooth concave contour, the stress intensification factors in the table still apply.
- (10) If the number of displacement cycles is less than 200, the radius and thickness limits specified need not be met. When the radius and thickness limits are not met and the number of design displacement cycles exceeds 200, the out-plane and in-plane stress intensification factors shall be calculated as $1.8/h^{2/3}$ and $(0.67/h^{2/3}) + \frac{1}{4}$, respectively.
- (11) The designer must be satisfied that this fabrication has a pressure rating equivalent to straight pipe.
- (12) The stress intensification factors apply to girth butt welds between two items for which the wall thicknesses are between $0.875\overline{7}$ and 1.10 \overline{T} for an axial distance of $\sqrt{D_o T} \cdot D_o$ and \overline{T} are nominal outside diameter and nominal wall thickness, respectively. δ_{avg} is the average mismatch or offset.

ASME B31.8-2010

NOTES: (Cont'd)

- (13) The equation applies only if the following conditions are met.
 - (a) Cone angle α does not exceed 60 deg, and the reducer is concentric.
 - (b) The larger of D_{o1}/\overline{T} and D_{o2}/\overline{T} does not exceed 100.
 - (c) The wall thickness is not less than \overline{t}_1 throughout the body of the reducer, except in and immediately adjacent to the cylindrical portion on the small end, where the thickness shall not be less than \overline{T}_2 .
- (14) For some flanged joints, leakage may occur at expansion stresses otherwise permitted herein. The moment to produce leakage of a flanged joint with a gasket having no self-sealing characteristics can be estimated by the equation.

$$M_L = (C/4) (S_b A_b - PA_p)$$

- (15) C_x is the fillet weld length. For unequal lengths, use the smaller leg for C_x .
- (16) Factors shown apply to bending. Flexibility factor for torsion equals 0.9.

Allowable Pressure

For straight pipes and bends, the calculation of allowable pressure is based on Eq. 2 of paras.904.1.1 and 904.2.1.

$$P = \frac{2SE(t_m - A)}{D}$$

where

P =allowable pressure

SE = allowable hoop stress, given in Appendix I of B31.9 (2008) Code, where

E = longitudinal or spiral weld joint efficiency factor or casting quality factor

 t_m = minimum required pipe thickness as per para.904.1.1(a)

= $t_n \times (1 - mill tolerance/100)$

t_n = nominal pipe thickness

A = corrosion allowance

(Any additional thickness required for threading, grooving, erosion, corrosion, etc., should be included in "corrosion allowance" in CAEPIPE)

D = outside diameter

For closely and widely spaced miter bends, the allowable pressure shall be the lower positive value calculated from Eqs. (3A) and (3B) of para 904.2.2 (a)

$$P = \frac{SET}{r} \left(\frac{T}{T + 0.64 \tan \theta \sqrt{rT}} \right)$$
 Eq. (3A)
$$P = \frac{SET}{r} \left(\frac{R - r}{R - r/2} \right)$$
 Eq. (3B)

where

 $r = mean radius of pipe = (D - t_n) / 2$

 $T = t_m - A$, where t_m and A are defined above

R = effective bend radius of the miter

 θ = miter half angle

Sustained Stress (in uncorroded condition)

The longitudinal stress (S_L) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated as mentioned in para.902.3.2 (d)

$$S_L = \frac{PD_o}{4t_n} + \frac{0.75iM_A}{Z} \le S_h$$

where

 $P = maximum of CAEPIPE pressures P_1, P_2 and P_3$

 D_o = outside diameter

t_n = nominal wall thickness

i = stress intensification factor. The product 0.75i shall not be less than 1.0.

M_A = resultant bending moment due to weight and other sustained loads

Z = uncorroded section modulus; for reduced outlets, effective section modulus

 S_h = hot allowable stress at maximum of CAEPIPE input temperatures T_1 , T_2 and T_3

Occasional Stress (in uncorroded condition)

The longitudinal stress (S_{Lo}) due to occasional loads is calculated as mentioned in para.902.3.3 (a) as the sum of stresses due to pressure, live and dead loads and stress due to occasional loads (S_o) such as earthquake or wind. Wind and earthquake are not considered to occur concurrently.

$$S_{Lo} = \frac{P_{peak}D_o}{4t_n} + \frac{0.75iM_A}{Z} + \frac{0.75iM_B}{Z} \le 1.33S_h$$

where

M_B = resultant bending moment due to occasional loads

P_{peak} = peak pressure = (peak pressure factor) x P

Expansion Stress (in uncorroded condition)

The stress (S_E) due to thermal expansion is calculated from para.902.3.2 (c), para.919.2.1 and para.919.4.1 (b).

$$S_E = \frac{iM_C}{Z} \le S_A$$

where

M_C = resultant moment due to thermal expansion

$$S_A = f(1.25S_C + 0.25S_h)$$

f = stress range reduction factor = 6/N^{0.2}, where N being the total number of equivalent reference displacement stress range cycles expected during the service life of the piping. Also 0.15 \leq f \leq 1.0

 S_{C} = allowable stress at cold temperature, i.e. at minimum of CAEPIPE input temperatures T1, T2, T3 and T_{ref}

When S_h is greater than S_L , the allowable stress range SA may be calculated as per para. 902.3.2 (d).

$$S_A = f[1.25(S_C + S_h) - S_L]$$

This is specified as an analysis option: "Use liberal allowable stresses", in the CAEPIPE menu Options->Analysis on the "Code" tab.

Note:

Refer Annexure B for the details of "Thickness" and the "Section Modulus" used for weight, pressure and stress calculations.

Allowable Pressure

The allowable pressure for straight pipes and bends is calculated from

$$P = \frac{2fze}{D-e}$$

where

P = allowable pressure

f = allowable stress

z = joint factor (input as material property in CAEPIPE)

e = nominal pipe thickness x [1 - mill tolerance %/100] - corrosion allowance "c"

(Any additional thickness required for threading, grooving, erosion, corrosion, etc. should be included in corrosion allowance in CAEPIPE)

D = outside diameter

For pipe bends the maximum allowable pressure is calculated using the equivalent pipe wall thickness $\mathsf{e}_{\mathsf{equi}}.$

$$e_{equi} = \frac{e}{t_f}$$

Where

$$t_f = \frac{(R/D - 0.25)}{(R/D - 0.50)}$$

R = radius of bend

For closely spaced miter bends, the allowable pressure is calculated from

_

$$P = \min\left[\frac{fze^2}{r(e+0.643\tan\theta\sqrt{re})}, \frac{fze(R_s-r)}{r(R_s-r/2)}\right] \text{ with } \theta \le 22.5$$

For widely spaced miter bends, the allowable pressure is calculated from

$$P = \min\left[\frac{fze^2}{r(e+0.643\tan\theta\sqrt{re})}, \frac{fze(R_s - r)}{r(R_s - r/2)}\right] \text{ with } \theta \le 22.5$$
$$P = \frac{fze^2}{r(e+1.25\tan\theta\sqrt{re})} \text{ with } \theta > 22.5$$

where

r = mean radius of pipe = (D - t)/2

R_s = effective bend radius of the miter

 θ = miter half angle

Sustained Stress

The stress (σ_1) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from

$$\sigma_1 = \frac{PD_o}{4e} + \frac{0.75iM_A}{Z} \le f_h$$

where

P = maximum of CAEPIPE input pressures P1, P2 and P3

D_o = outside diameter

e = nominal pipe thickness x [1 - mill tolerance%/100] - corrosion allowance "c"

i = stress intensification factor; the product of 0.75i shall not be less than 1.0

 M_{A} = resulting bending moment due to sustained loads

Z = uncorroded section modulus; for reduced outlets / branch connections, effective section modulus

f_h = hot allowable stress

Sustained plus Occasional Stress

The stress (σ_2) due to sustained and occasional loads is calculated as the sum of stress due to sustained loads such as due to pressure, weight and other sustained mechanical loads and stress due to occasional loads such as earthquake or wind. Wind and earthquake are not considered concurrently.

$$\sigma_2 = \frac{PD_o}{4e} + \frac{0.75iM_A}{Z} + \frac{0.75iM_B}{Z} \le kf_h$$

M_B=resultant bending moment due to occasional load

k = 1.2 if the occasional load is acting less than 1% in any 24 hour operating period. In CAEPIPE k = 1.2 is used for occasional loading.

Expansion Stress

The stress (σ_3) due to thermal expansion is calculated from

$$\sigma_3 = \frac{iM_C}{Z} \le f_a$$

where

M_C = resultant moment due to thermal expansion and alternating loads

Z = uncorroded section modulus; for reduced outlets / branch connections, effective section modulus

$$f_a = U(1.25f_c + 0.25f_h)\frac{E_h}{E_c}$$

U = cyclic stress range reduction factor as mentioned below

Number of cycle	Stress range reduction factor U
<= 7000	1.0
7001 to 14000	0.9
14001 to 22000	0.8
22001 to 45000	0.7
45001 to 100000	0.6
100001 to 200000	0.5

f_C = allowable stress at cold temperature

f_h = allowable stress at hot temperature

 E_c = elastic modulus at cold temperature

 E_h = elastic modulus at hot temperature

If the above condition is not met, then the following may be used

$$\sigma_4 = \frac{PD_o}{4e} + \frac{0.75iM_A}{Z} + \frac{iM_C}{Z} \le f_h + f_a$$

Additional Conditions for the Creep Range

For piping operating within the creep range, the stress, σ_5 , due to sustained, thermal and alternating loadings shall satisfy the equation below.

$$\sigma_{5} = \frac{PD_{o}}{4e} + \frac{0.75iM_{A}}{Z} + \frac{0.75iM_{C}}{3Z} \le f_{cr}$$

where

 f_{cr} = allowable creep stress value

Composant	Caracté- ristique de flexibilité	Coefficient de flexibilité	Coeffici	Module d'inertie		
	h	k Note (1)	t	<i>i</i> 0 hors du plan	<i>i</i> i dans le plan	d'inertie
1. Tuyau droit soudé bout-à-bout		Ī	1	Î	Î	$\frac{\pi}{32} \frac{D_e^4 - D_i^4}{D_e}$
2. Tuyau droit ondulé ou coude ondulé		5	2,5	2,5	2,5	
3. Coude ou cintre soudé bout-à-bout er D _m D _m D _m D _m	$\frac{4 e_{\rm f} R_{\rm c}}{D_{\rm m}^2}$	$\frac{1.65}{h}$	$\frac{0,9}{h^{2/3}}$ Notes (2) & (3)	$\frac{0.75}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$ tes $0 \& (4)$	$\frac{\pi}{32} \frac{D_{\rm e}^4 - D_{\rm i}^4}{D_{\rm e}}$

Composant	Caracté- ristique de flexibilité	Coefficient de flexibilité	Coefficie	nts d'intensif contrainte	Module	
	h	k Note (1)	i	i ₀ hors du plan	<i>i</i> i dans le plan	d'inertie
4.1 Coude à sections rapprochées ou à sections multiples $s_{i} \rightarrow b_{i} \rightarrow c_{e_{f}} \rightarrow b_{m}$ $s_{m} \rightarrow b_{i} \rightarrow c_{e_{f}} \rightarrow b_{m}$ $s_{m} \leq \frac{D_{i}}{2\theta} - \frac{2\theta}{2\theta} - \frac{1}{2\theta} -$	$\frac{4 R_c e_f}{D_m^2}$	$\frac{1,52}{h^{5/6}}$	$\frac{0,9}{h^{2/3}}$ $s_i \ge 6 \ e_f$ $\theta \le 22,5^{\circ}$ Notes (2) & (3)	0,9 h ^{2/3} (2),(3)	$\frac{0.9}{h^{2/3}}$ tes & (4)	$\frac{\pi}{32} \frac{D_o^4 - D_i^4}{D_o}$
$R_{\rm c} = \frac{s_{\rm m} \cot \theta}{2}$						
4.2 Coude à sections espacées et coude à un onglet s_m D_1 D_2 $C_2 \theta$ R_c R_c $R_c = \frac{D_m (1 + \cot \theta)}{4}$	$\frac{4 R_{\rm c} e_{\rm f}}{D_{\rm m}^2}$	$\frac{1,52}{h^{5/6}}$	$\frac{0,9}{h^{2/3}}$ $\theta \le 22,5^{\circ}$ Note (2)	$\frac{0.9}{h^{2/3}}$ Not (2), (3)	$\frac{0.9}{h^{2/3}}$ es & (4)	$\frac{\pi}{32} \frac{D_o^4 - D_i^4}{D_o}$

Composant	Caracté- ristique de flexibilité	Coefficient de flexibilité	Coefficie	on de	Module d'inertie	
	h	k Note (1)	i	i ₀ hors du plan dans	<i>i</i> i s le plan	a mertie
5.1 Réduction forgée		1		$0,5 + \frac{\alpha}{100} \left(\frac{D_2}{e_2}\right)^{1/2}$ $MAX = 2,0$ $(\alpha \text{ en }^{\circ})$ $\alpha \leq 60^{\circ}$ $d_1/e_1 \leq 100$ $d_2/e_2 \leq 100$ Note (5)		
5.2 Réduction chaudronnée voir figure C2.2.4			1	Note (14)		
6. Té reconstitué non renforcé avec tubulure posée ou pénétrante	$\frac{2 e_{\rm f}}{D_{\rm m}}$	1	$\frac{0.9}{h^{2/3}}$ Notes (2) & (12)	$\frac{0.9}{h^{2/3} (\sin \alpha)^{3/2}}$ $\frac{\alpha}{\alpha} = \text{angle} \text{ d'inclinaison de la tubulure par rapport au collecteur}}$ $\frac{3 i_1}{4}$ Notes	<u>0</u> + 0,25	Collecteur $\frac{\pi}{32} \frac{D_e^4 - D_i^2}{D_e}$ Dérivation $\frac{\pi}{4} d_m^2 e_x$ $e_x = MIN$ $(e_t; i e_b)$

Composant	Caracté- ristique de flexibilité	Coefficient de flexibilité k	Coefficie	nts d'intensif contrainte i ₀	ication de	Module d'inertie
		Note (1)		hors du plan	dans le plan	
7. Té reconstitué avec tubulure posée ou pénétrante et renforcé par anneau ou selle de renfort	si e _r ≤ 1,5 e _f			$\frac{0,9}{h^{2/3}\left(\sin\alpha\right)}$	3/2	Collecteur $\frac{\pi}{32} \frac{D_{e}^{4} - D_{i}^{4}}{D_{e}}$
$\begin{array}{c} \begin{array}{c} & d_{0} \\ \hline \\ e_{f} \\ e_{r} \\ \hline \\ \\ \end{array} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\frac{2\left(e_{\rm f}+0.5\ e_{\rm f}\right)}{e_{\rm f}^{3/2}\ D_{\rm f}}$	$\left \frac{2}{r} \right ^{5/2} = \left 1 \right ^{5/2}$	$\frac{0.9}{h^{2/3}}$ Notes (2) & (12)	α = angle d'inclinaison de la tubulure par rapport au collecteur		Dérivation $\frac{\pi}{4} d_{\rm m}^2 e_{\rm x}$
avec avec anneau renfort selle de renfort	si $e_{\rm r} > 1,5 e_{\rm f}$ 8 $\frac{e_{\rm r}}{D_{\rm m}}$			No (2), (6), ($\frac{3 i_0}{4} + 0,25$ tes 7) & (11)	$e_{\rm x} = MIN$ $(e_{\rm f}; i e_{\rm b})$
8. Piquage avec pièces forgées						
	$6,6\frac{e_{\rm f}}{D}$	1 Type manchon forgé		2,1	2,1	
Type Type manchon forgé weldolets etc.	$\nu_{\rm m}$	l Type weldolets etc.		$\frac{0,9}{h^{2/3}}$	$\frac{3 i_0}{4} + 0,25$	

Composant	Caracté- ristique de flexibilité	Coefficient de flexibilité	Coefficie	Module		
	h	k Note (1)	i	i _o hors du plan	<i>i</i> i dans le plan	a inertie
9. Piquage posé intégralement renforcé	6,6 $\frac{e_{\rm f}}{D_{\rm m}}$	1		$\frac{0.9}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	
				No (2), (6), (otes 8) & (10)	
10. Piquage avec selle de renfort insérée d_0 d_1 e_f d_1 e_t d_0 d_1 e_t d_0 d_1 d_1 d_1 d_1 d_2 d_1 d_2 d_1 d_2 d_3 d_1 d_2 d_3 d_4 d_1 d_2 d_3 d_4 d_1 d_2 d_3 d_4 d_1 d_2 d_3 d_4 d_1 d_2 d_3 d_4 d_5 d_1 d_2 d_3 d_4 d_5 d_5 d_6 d_1 d_2 d_3 d_4 d_5	<u>8,8 e_f</u> D _m	1	$\frac{0.9}{h^{2/3}}$ et Tableau C3.2.6-2	$\frac{0.9}{h^{2/3}}$ $r_1 \ge c$ $e_t \ge 1$ (2), (7), (8)	$\frac{3 i_0}{4} + 0.25$ $\frac{d_0}{8}$ $1.5 e_f$ $\frac{1}{9} \& (11)$	

Composant	Caracté- ristique de flexibilité flexibilité		Coefficie	Module		
	h	k	i	i0	ii dona la nian	a inertie
11. Té forgé				nors du plan	dans le plan	Collecteur
d_0 d_m r_t						$\frac{\pi}{32} \frac{D_{\rm e}^4 - D_{\rm i}^4}{D_{\rm e}}$
D_{e} D_{i} D_{m}	$\frac{8,8 e_{\rm f}}{D_{\rm m}}$	1	$\frac{0,9}{h^{2/3}}$	$\frac{0.9}{h^{2/3}}$	$\frac{3 i_0}{4} + 0,25$	Dérivation $\frac{\pi}{4} d_{\rm m}^2 e_{\rm x}$
				$e_t \ge 1$	1,5 e _f	$e_{\rm x} = {\rm MIN}$ $(e_{\rm f}; i e_{\rm b})$
				No (2), (7), (8)	tes , (9) & (11)	
12. Té à souder extrudé						
r_t d_0 e_t e_f D_e D_m	$\left(1 + \frac{2r_{\rm t}}{D_{\rm m}}\right) \frac{2e_{\rm t}}{D_{\rm m}}$	<u>f</u> 1	Note (13)	$\frac{0.9}{h^{2/3}}$ $r_t \ge 0,$ $e_t \le 1$ Not (2) &	$\frac{3 i_0}{4} + 0.25$ $05 d_0$ $5 e_f$ $\frac{1}{4} + 0.25$	

Composant	Caracté- ristique de flexibilité	Coefficient de flexibilité	Coefficio	Module d'inertie		
	h	k Note (1)	i	i ₀ hors du plan	<i>i</i> i dans le plan	d'inertie
13. Triform d_{m} e_{b} $D_{i_{1}}D_{o}$ D_{m}	$\frac{2 e_{\rm f}}{D_{\rm m}}$	1	Note (13)	$\frac{0.9}{h^{2/3}}$	$\frac{3 i_0}{4} + 0,25$	Collecteur $\frac{\pi}{32} \frac{D_o^4 - D_i^4}{D_o}$ Dérivation $\frac{\pi}{4} d_m^2 e_x$
						$e_{\rm x} = MIN$ $(e_{\rm f}; i e_{\rm b})$
14.1 Bride à assembler bout-à-bout		1		1		
14.2 Bride à emmancher et à souder (soudée des deux côtés)		1		1,2		

Tableau C3.2.6-1 - Caractéristique de flexibilité, coefficient de flexibilité et coefficients d'intensification de contrainte (suite)

Composant	Caracté- ristique de flexibilité h	Coefficient de flexibilité k Note (1)	Coefficients d'intensification de contrainte i $\begin{vmatrix} i_0 \\ hors du plan \end{vmatrix}$ $\begin{vmatrix} i_i \\ dans le plan \end{vmatrix}$			Module d'inertie
14.3 Bride tournantes		1		1,6		
14.4 Bride à visser Voir figure C2.2.8.3.7-2		1	2,3			
15.1 Soudure bout-à-bout δ e_{f} D_{0}				1 $e_n \ge 5 \text{ mm}$ et $\delta \le 0,1 e_f$ Note (15) $1,8$ $e_n < 5 \text{ mm ou}$ $\delta > 0,1 e_f$ Note (15)		$\frac{\pi}{32} \frac{D_o^4 - D_i^4}{D_o}$
15.2 Transition d'épaisseur de paroi e_{f} $\alpha \leq 30^{\circ}$ $\beta \leq 15^{\circ}$			1,3 + 0,0 avec to sans soud niveau co	0036 D ₀ / e _f + in maximum o Note (15) ure circonfére le la transition	3,6 δ / e_f de 1,9 ntielle au t $\delta = 0$	$\frac{\pi}{32} \frac{D_o^4 - D_i^4}{D_o}$

Composant	Caracté- ristique de flexibilité	Coefficient de flexibilité	Coeffic	ients d'intensif contrainte	Module	
	h	k Note (1)	1	<i>i</i> 0 hors du plan	<i>i</i> i dans le plan	u mertie
15.3 Composant emmanché-soudé e_{1g} D_{0} e_{f} forme concave avec raccordement régulier au tuyau		1	1,3	$\frac{2,1}{e_1}$ avec un mini- et un maxir	e _f ^{lg} imum de 1,3 num de 2,1	$\frac{\pi}{32} \frac{D_o^4 - L}{D_o}$ $\frac{\pi}{4} D_o^2 e_f$
15.4 Composant emmanché-soudé e_{1g} p_{0} e_{f} forme convexe		1	2,1	$\frac{2,1}{e_1}$ avec un mini- et un maxir	e _f g imum de 1,3 num de 2,1	$\frac{\pi}{32} \frac{D_o^4 - L}{D_o}$ $\frac{\pi}{4} D_o^2 e_f$

Tableau (C3.2.6-1 - Caractéristique de flexibilité, coefficient de flexibilité
	et coefficients d'intensification de contrainte (suite)

Notes du tableau C3.2.6-1

(1) Le coefficient de flexibilité k s'applique à la flexion dans tous les plans. Le coefficient pour la torsion est égal à 1 dans tous les cas à l'exception du cas 2 (tuyau droit et coude ondulé) pour lequel il est égal à 0,9.

(2) Les coefficients k, i, io, i1 s'appliquent sur toute la longueur effective des coudes et des cintres (ligne épaissie sur les schémas) et à l'intersection des axes pour les tés et les piquages.

(3) Si ces composants sont munis :

- d'une bride à l'une de leurs extrémités, k, i, i_0 , i_1 sont à multiplier par $h^{1/6}$,
- d'une bride à leurs deux extrémités, k, i, i_0 , i_1 sont à multiplier par $h^{1/3}$.

(4) Si la pression est susceptible d'apporter une correction d'ovalisation (grand diamètre, petite épaisseur), les coefficients sont divisés par :

$$- 1 + 6\left(\frac{P}{E}\right)\left(\frac{r_{\rm m}}{e_{\rm r}}\right)^{7/3}\left(\frac{R_{\rm c}}{r_{\rm m}}\right)^{1/3} \quad \text{pour le coefficient } k.$$
$$- 1 + 3,25\left(\frac{P}{E}\right)\left(\frac{r_{\rm m}}{e_{\rm r}}\right)^{5/2}\left(\frac{R_{\rm c}}{r_{\rm m}}\right)^{2/3} \quad \text{pour les coefficients } i, i_0, i_1$$

P étant la pression de service et E le module d'élasticité à 20 °C.

(5) L'épaisseur de la paroi de la réduction ne doit pas être inférieure à e_1 sauf au voisinage de l'extrémité de petit diamètre où, toutefois, l'épaisseur de la paroi ne doit pas être inférieure à e_2 .

(6) Le coefficient d'intensification de contrainte « hors du plan », pour un piquage dont le rapport des diamètres de la tubulure et du collecteur est supérieur à 0,5, peut être non-conservatif. Par ailleurs, il a été démontré qu'un raccordement régulier par une soudure de forme concave réduit la valeur de ce coefficient. Le choix d'une valeur appropriée pour ce coefficient reste donc de la responsabilité du Concepteur.

(7) Les coefficients d'intensification de contrainte pour les raccordements de tubulures sont basés sur des essais avec au moins deux diamètres de tuyau droit de chaque coté de l'axe de la tubulure. Le cas de tubulures plus proches requiert une attention particulière.

(8) Les pièces forgées utilisées doivent être appropriées aux conditions de service.

(9) Lorsque les limitations portant sur le rayon et l'épaisseur ne sont pas respectées et en l'absence de données fiables la

caractéristique de flexibilité doit être prise égale à
$$\frac{2 e_{\rm f}}{D_{\rm m}}$$

(10) Le Concepteur doit vérifier que le dimensionnement en fonction de la pression est au moins équivalent à celui du tuyau droit.

(11) Les coefficients ne s'appliquent qu'aux piquages à axes concourants.

(12) D'autres valeurs peuvent être utilisées sous réserve de justification.

(13) En l'absence de données fiables, la détermination des coefficients est de la responsabilité du Concepteur.

(14) En l'absence de données plus précises, les coefficients d'intensification de contrainte peuvent être pris égaux à 2,5.

(15) Le coefficient s'applique dans le cas où les tolérances de fabrication (voir partie F) sont respectées. Dans le cas contraire, la détermination des coefficients est de la responsabilité du Concepteur.

Allowable Pressure

The allowable pressure for straight pipes is calculated from equation 6.1-1 or 6.1-3 depending on the ratio between inner and outer diameter.

For $D_o / D_i \leq 1.7$

$$P = \frac{2fze}{D_o - e}$$

For $D_o / D_i > 1.7$

$$P = fz \frac{(1-a^2)}{(1+a^2)}$$

where

P = allowable pressure

f = allowable stress

z = joint factor (input as material property in CAEPIPE)

e = nominal pipe thickness x [1 - mill tolerance %/100] - corrosion allowance "c"

(Any additional thickness required for threading, grooving, erosion, corrosion, etc. should be included in corrosion allowance in CAEPIPE)

 $D_o = outside diameter$

 D_i = inside diameter

$$a=1-\frac{2e}{D_a}$$

For pipe bends the maximum allowable pressure is calculated using the equivalent pipe wall thickness $e_{\text{equi}}.$

$$e_{equi} = \frac{e}{t_f}$$

Where

$$t_f = \frac{(R/D - 0.25)}{(R/D - 0.50)}$$

R = radius of bend

For closely spaced miter bends, the allowable pressure is calculated from equations 6.3.4-1 and 6.3.4-2.

$$P = \min\left[\frac{fze^2}{r(e+0.643\tan\theta\sqrt{re})}, \frac{fze(R_s-r)}{r(R_s-r/2)}\right] \text{ with } \theta \le 22.5$$

For widely spaced miter bends, the allowable pressure is calculated from equations 6.3.4-1, 6.3.4-2 and 6.3.5-1

$$P = \min\left[\frac{fze^2}{r(e+0.643\tan\theta\sqrt{re})}, \frac{fze(R_s-r)}{r(R_s-r/2)}\right] \text{ with } \theta \le 22.5$$

$$P = \frac{fze^2}{r(e+1.25\tan\theta\sqrt{re})} \text{ with } \theta > 22.5$$

Where

r = mean radius of pipe = (D - t)/2

R_s = effective bend radius of the miter

 θ = miter half angle

Sustained Stress

The stress (σ_1) due to sustained loads (pressure, weight and other sustained mechanical loads) is calculated from equation (12.3.2-1)

$$\sigma_1 = \frac{PD_o}{4e_n} + \frac{0.75iM_A}{Z} \le f_h$$

where

P = maximum of CAEPIPE input pressures P1, P2 and P3

D_o = outside diameter

e_n = nominal pipe thickness

i = stress intensification factor; the product of 0.75i shall not be less than 1.0

 M_{A} = resulting bending moment due to sustained loads

Z = uncorroded section modulus; for reduced outlets / branch connections, effective section modulus

 f_h = hot allowable stress

Sustained plus Occasional Stress

The stress (σ_2) due to sustained and occasional loads is calculated from equation (12.3.3-1) as the sum of stress due to sustained loads such as due to pressure, weight and other sustained mechanical loads and stress due to occasional loads such as earthquake or wind. Wind and earthquake are not considered concurrently.

$$\sigma_2 = \frac{PD_o}{4e_n} + \frac{0.75iM_A}{Z} + \frac{0.75iM_B}{Z} \le kf_h$$

M_B=resultant bending moment due to occasional load

k = 1.2 if the occasional load is acting less than 1% in any 24 hour operating period. In CAEPIPE k = 1.2 is used for occasional loading.

Expansion Stress

The stress (σ_3) due to thermal expansion is calculated from equation (12.3.4-1)

$$\sigma_3 = \frac{iM_C}{Z} \le f_a$$

where

M_C = resultant moment due to thermal expansion and alternating loads

Z = uncorroded section modulus; for reduced outlets / branch connections, effective section modulus

$$f_a = U(1.25f_c + 0.25f_h)\frac{E_h}{E_c}$$

U = cyclic stress range reduction factor taken from table 12.1.3-1

f_C = allowable stress at cold temperature

 f_h = allowable stress at hot temperature

E_c = elastic modulus at cold temperature

E_h = elastic modulus at hot temperature

If the above condition in equation (12.3.4-1) is not met, equation (12.3.4-2) may be used.

$$\sigma_{4} = \frac{PD_{o}}{4e_{n}} + \frac{0.75iM_{A}}{Z} + \frac{iM_{C}}{Z} \le f_{h} + f_{a}$$

Additional Conditions for the Creep Range

For piping operating within the creep range, the stress, σ_5 , due to sustained, thermal and alternating loadings shall satisfy the equation (12.3.5-1) below.

$$\sigma_{5} = \frac{PD_{o}}{4e} + \frac{0.75iM_{A}}{Z} + \frac{0.75iM_{C}}{3Z} \le f_{cr}$$

where

 f_{cr} = allowable creep stress value

Table H.1 — Flexibility characteristics, flexibility and stress intensification factors and section moduli for general cases

N°	Designation	Sketch	Flexibility characteristic <i>h</i>	Flexibility factor <i>k</i> B ^a	Stress intensification factor <i>i</i>	Section modulus Z
1	straight pipe		1	1	1	
2	plain bend		$\frac{4Re_{\rm n}}{d_{\rm m}^2}$	<u>1,65</u> h	0,9 h ^{2/3} bc	$\frac{\pi}{32} \frac{d_0^4 - d_i^4}{d_0}$
3	Closely spaced mitre bend $l < r (1 + \tan \theta)$ $(l = 2 R \tan \theta)$		$\frac{4Re_{\rm n}}{d_{\rm m}^2}$ with $R = \frac{l\cot\theta}{2}$	$\frac{1,52}{h^{5/6}}$	0,9 h ^{2/3} bc	
					(ť	o be continued)

Table H.1 (continued)

N°	Designation	Sketch	Flexibility characteristic <i>h</i>	Flexibility factor <i>k</i> B ^a	Stress intensification factor <i>i</i>	Section modulus Z
4	Single mitre bend or widely spaced mitre bend /≥r(1 + tan <i>θ</i>)		$R = \frac{\frac{4Re_{\rm n}}{d_{\rm m}^2}}{4}$ $R = \frac{d_{\rm m}(1 + \cot\theta)}{4}$	$\frac{1.52}{h^{5/6}}$	<u>0,9</u> h ^{2/3} ь	
5	forged welded-in reducer	e g g g g g g g g g g g g g g g g g g g	Shape conditions : $\alpha \le 60^{\circ}$ $e_{n} \ge d_{0}/100$ $e_{2} \ge e_{1}$	1	$0.5 + \frac{\alpha}{100} \left(\frac{d_0}{e_n}\right)^{1/2}$ max. 2,0 (\alpha in deg.) ^d	
6	tee with welded- on, welded-in or extruded nozzle		2e _n d _m	1	0,9 h ^{2/3} be	Header : $\frac{\pi}{32} \frac{d_0^4 - d_1^4}{d_0}$
7	as above, however, with additional reinforcing ring		$\frac{2(e_n + 0.5e_{pl})^{5/2}}{d_m e_n^{-3/2}}$ with $e_{pl \le e_n}$	1	0,9 h ^{2/3} be	Nozzle $\frac{\pi}{4}d_{n,b}^2e_x$ with ex as
8	forged welded-in tee with e _n and e _{n,b} as connecting wall thickness		<u>8,8e_n</u> <i>d</i> _m	1	0,9 h ^{2/3} bg	smaller value of $e_{x1} = e_n$ and $e_{x2} = i e_{n,b}$ resp.
9	butt weld		e _n ≤ 5mm and δ≤ 0,1e _n f	1	1,0 ^f	6.
		ø	e _n < 5mm and δ> 0,1e _n f	1	1,8 ^f	

Table H.1 (concluded)

N°	Designation	Sketch	Flexibility characteristic <i>h</i>	Flexibility factor <i>k</i> B ^a	Stress intensification factor <i>i</i>	Section modulus Z
10	wall thickness transitions		$\alpha \le 30^{\circ}$ $\beta \le 15^{\circ}$ (without circumferential weld at transitions $\delta = 0$)	1	$1,3 + 0,0036 \frac{d_o}{e_n} + 3,6 \frac{\delta}{e_n}$	$\frac{\pi}{32} \frac{d_0^4 - d_i^4}{d_0}$
	~				max 1,9 ^f	
11	fillet welds at set-in connections		concave shape with continuous transition to pipe	1	1,3	smaller value of $\frac{\pi}{32} \frac{d_0^4 - d_i^4}{d_0}$ and
12				1	2,1	$\frac{\pi}{4}d_{o}^{2}a$
^э т	he flexibility factor	r kB applies to bending in all plar i apply over the whole effective	nes. The factor related length of the elbows a	to torsion is and bends and	equal to 1 in all case d at the intersection o	s. of the axes in

- c If these components are fitted with :
 - flange at one extremity, k_B and *i* are multiplied by h^{1/6};
 - flange at each of the extremities, $k_{\rm B}$ and i are multiplied by $h^{1/3}$.
- ^d The wall thickness of the reducer is not less than e_1 except in the vicinity of the small end where however the thickness is not less than e_n .
- e Other values may be used subject to justification.
- The factor applies if the fabrication tolerances are met. Otherwise the determination of the factors is the responsibility of the designer.
- The factors only apply to nozzles with convergent axes.

Component description	Out-of-plane <i>i</i> o	In-plane <i>i</i> i	Flexibility characteristic	Sketch
Welding elbow or pipe bend	0,75 h ^{2/3} abc	0,9 h ^{2/3} abc	$\frac{e_{n}R}{r^{2}}$	e a
Closely spaced mitre bend $l < r (1 + \tan \theta)$ $(l = 2 R \tan \theta)$	$\frac{0,9}{h^{2/3}}$ abc	$\frac{0,9}{h^{2/3}}$ abc	$\frac{\cot\theta}{2}\frac{e_{\rm n}l}{r^2}$	e e e e
Single mitre bend or widely spaced mitre bend /≥r(1 + tan <i>θ</i>)	$\frac{0,9}{h^{2/3}}$ abc	$\frac{0,9}{h^{2/3}}$ abc	$\frac{e_{\rm n}}{r} \left(\frac{1+\cot\theta}{2}\right)$	
Forged tee to be welded, designed with a burst pressure greater than or equal to the burst pressure of the connected pipes	0,9 h ^{2/3} aefgi	0,75 <i>i</i> ₀ + 0,25 aefgi	<u>4,4e_n</u> r	
Reinforced fabricated tee with pad or saddle	0,9 h ^{2/3} adei	0,75 <i>i</i> ₀ + 0,25 adei	$\frac{(e_{\rm n}+0.5e_{\rm r})^{5/2}}{r(e_{\rm n}^{3/2})}$	
Unreinforced fabricated tee	$rac{0,9}{h^{2/3}}$ adei	0,75 <i>i</i> ₀ + 0,25 adei	en r	

Table H.3 — Flexibility characteristics and stress intensification factors for out-of-plane and ir	n-plane bendin
--	----------------

			,				
	Component description	Out-of-plane i _o	In-plane <i>İ</i> i	Flexibility characteristic	Sketch		
Ex	truded welding tee	0,9 h ^{2/3} ae	0,75 <i>i</i> ₀ + 0,25 ae	$\left(1+\frac{r_1}{r}\right)\frac{e_n}{r}$			
v	Velded in contour insert	0,9 h ^{2/3} aefgi	0,75 <i>i</i> ₀ + 0,25 aefgi	<u>4,4en</u> r			
E	Branch welded on fitting (integrally reinforced)	$rac{0,9}{h^{2/3}}$ adfh	0,75 <i>i</i> ₀ + 0,25 adfh	<u>3,3e_n r</u>			
a b	The factors <i>i</i> ₀ and <i>i</i> ₁ the axes in case of If these components - flange at one e - flange at each	apply over the wh tees and nozzles. s are fitted with : extremity, <i>i</i> ₀ and <i>i</i> ₁ n of the extremities	nole effective leng are multiplied by s, i _o and i _i are mul	th of the elbows and h $h^{1/6}$; tiplied by $h^{1/3}$.	pends and at the intersection of		
c	^c If the pressure is likely to correct ovality (large diameter, small thickness), the factors i_0 and i_j shall be divided by $1 + 3.25 \left(\frac{P}{E}\right) \left(\frac{r_m}{e_r}\right)^{5/2} \left(\frac{R}{r_m}\right)^{2/3}$, where <i>P</i> is the operating pressure and <i>E</i> the modulus of elasticity at 20 °C.						
d	⁴ For a nozzle with a ratio of branch diameter to pipe diameter exceeding 0,5, the out-of-plane stress intensification factor may be non-conservative. In addition a smooth transition by a concave shaped weld is proved to reduce the value of this factor. Consequently the selection of an appropriate value for this factor remains the responsibility of the designer.						
e	The stress intensification factors regarding the branch connections are based on tests carried out with at least two diameters of straight pipe on either side of the branch axis. The case of closer branches requires a particular attention.						
f	The forgings shall b	e suitable with rec	ard to the operati	ng conditions.			
g	When the limitation	s with respect to ra	adius and thicknes	ss are not met and rel	iable data are not available, the		
	flexibility characteris	stic is taken as $\frac{e}{r}$	<u>n</u> ,				
h	The designer shall check that the design against pressure is at least equivalent to that for a straight pipe.						

i

The factors only apply to nozzles with convergent axes.

Table H.3 (concluded)

Annexure B

Thickness and Section Modulus used in Weight, Pressure and Stress Calculations for ASME B31.x Codes

Particulars	Allowable Pressure	Pipe Weight	Sustained Stress	Expansion Stress	Occasional Stress	
B31.1 (2010)						
Pipe Thickness used	Nominal Thk. x (1-mill tolerance/100) – Corrosion allowance	Nominal Thickness	Nominal Thickness	-	Nominal Thickness	
Section Modulus used	-	-	Uncorroded Section Modulus; For Branch, effective section modulus	Uncorroded Section Modulus; For Branch, effective section modulus	Uncorroded Section Modulus; For Branch, effective section modulus	
B31.3 (2010)						
Pipe Thickness used	Nominal Thk. x (1-mill tolerance/100) – Corrosion allowance	Nominal Thickness	Nominal Thickness - Corrosion allowance	-	Nominal Thickness – Corrosion allowance	
Section			Corroded Section Modulus;	Uncorroded Section Modulus;	Corroded Section Modulus;	
Modulus used	-	-	For Branch, effective section modulus	For Branch, effective section modulus	For Branch, effective section modulus	
B31.4 (2009)						
Pipe Thickness used	Nominal Thk. x (1-mill tolerance/100) – Corrosion allowance	Nominal Thickness	Nominal Thickness	-	Nominal Thickness	
Section			Uncorroded Section Modulus;	Uncorroded Section Modulus;	Uncorroded Section Modulus;	
Modulus used	-	-	For Branch, effective section modulus	For Branch, effective section modulus	For Branch effective section modulus	
B31.5 (2010)						
Pipe Thickness used	Nominal Thk. x (1-mill tolerance/100) – Corrosion allowance	Nominal Thickness	Nominal Thickness – Corrosion allowance	-	Nominal Thickness – Corrosion allowance	

Particulars	Allowable Pressure	Pipe Weight	Sustained Stress	Expansion Stress	Occasional Stress	
Section Modulus used	-	-	Corroded Section Modulus; For Branch, effective section modulus	Uncorroded Section Modulus; For Branch, effective section modulus	Corroded Section Modulus; For Branch, effective section modulus	
B31.8 (2010)						
Pipe Thickness used	Nominal Thk. x (1-mill tolerance/100) – Corrosion allowance	Nominal Thickness	Nominal Thickness	-	Nominal Thickness	
Section			Uncorroded Section Modulus;	Uncorroded Section Modulus;	Uncorroded Section Modulus;	
Modulus used	-	-	For Branch, effective section modulus	For Branch, effective section modulus	For Branch, effective section modulus	
B31.9 (2008)						
Pipe Thickness used	Nominal Thk. x (1-mill tolerance/100) – Corrosion allowance	Nominal Thickness	Nominal Thickness	-	Nominal Thickness	
Section			Uncorroded Section Modulus;	Uncorroded Section Modulus;	Uncorroded Section Modulus;	
Modulus used	-	-	For Branch, effective section modulus	For Branch, effective section modulus	For Branch, effective section modulus	

Note:

1. Corrosion allowance includes thickness required for threading, grooving, erosion, corrosion etc.

2. Uncorroded section modulus = section modulus calculated using the nominal thickness.

3. Corroded section modulus = section modulus calculated using the "corroded thickness"

corroded thickness = nominal thickness - corrosion allowance

4. Effective section modulus = section modulus calculated using effective branch thickness, which is lesser of i_it_b or t_h

where, t_b = branch nominal thickness, t_h = header nominal thickness, i_i = in-plane SIF at branch